The Cryosphere Discuss., 6, 893-930, 2012
www.the-cryosphere-discuss.net/6/893/2012/
doi:10.5194/tcd-6-893-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal The Cryosphere (TC). Please refer to the corresponding final paper in TC.
Monte Carlo ice flow modeling projects a new stable configuration for Columbia Glacier, Alaska, by c. 2020
W. Colgan1, W. T. Pfeffer2, H. Rajaram3, and W. Abdalati1,4
1Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA
2Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309, USA
3Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309-0428, USA
4Headquarters, National Aeronautic and Space Administration, Washington, DC, 20546, USA

Abstract. Due to the abundance of observational datasets collected since the onset of its retreat (c. 1983), Columbia Glacier, Alaska, provides an exciting modeling target. We perform Monte Carlo simulations of the form and flow of Columbia Glacier, using a 1-D (depth-integrated) flowline model, over a wide range of parameter values and forcings. An ensemble filter is imposed following spin-up to ensure that only simulations which accurately reproduce observed pre-retreat glacier geometry are retained; all other simulations are discarded. The selected ensemble of simulations reasonably reproduces numerous highly transient post-retreat observed datasets with a minimum of parameterizations. The selected ensemble mean projection suggests that Columbia Glacier will achieve a new dynamic equilibrium (i.e. "stable") ice geometry c. 2020, by which time iceberg calving rate will have returned to approximately pre-retreat values. Comparison of the observed 1957 and 2007 glacier geometries with the projected 2100 glacier geometry suggests that, by 2007, Columbia Glacier had already discharged ∼83 % of its total sea level rise contribution expected by 2100. This case study therefore highlights the difficulties associated with the future extrapolation of observed glacier mass loss rates that are dominated by iceberg calving.

Citation: Colgan, W., Pfeffer, W. T., Rajaram, H., and Abdalati, W.: Monte Carlo ice flow modeling projects a new stable configuration for Columbia Glacier, Alaska, by c. 2020, The Cryosphere Discuss., 6, 893-930, doi:10.5194/tcd-6-893-2012, 2012.
 
Search TCD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share