The Cryosphere Discuss., 7, 219-244, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal The Cryosphere (TC). Please refer to the corresponding final paper in TC.
Density assumptions for converting geodetic glacier volume change to mass change
M. Huss
Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland

Abstract. The geodetic method is widely used for assessing changes in the mass balance of mountain glaciers. However, comparison of repeated digital elevation models only provides a glacier volume change that must be converted to a change in mass using a density assumption. This study investigates this conversion factor based on a firn compaction model applied to simplified glacier geometries with idealized climate forcing, and two glaciers with long-term mass balance series. It is shown that the "density" of geodetic volume change is not a constant factor and is systematically smaller than ice density in most cases. This is explained by the accretion/removal of low-density firn layers, and changes in the firn density profile with positive/negative mass balance. Assuming a value of 850 ± 60 kg m−3 to convert volume change to mass change is appropriate for a wide range of conditions. For short time intervals (≤3 yr), periods with limited volume change, and/or changing mass balance gradients, the conversion factor can however vary from 0–2000 kg m−3 and beyond which requires caution when interpreting glacier mass changes based on geodetic surveys.

Citation: Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere Discuss., 7, 219-244, doi:10.5194/tcd-7-219-2013, 2013.
Search TCD
Discussion Paper
    Final Revised Paper