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Abstract

Ice-shelf forced vibrations modelling was performed using a full 3-D finite-difference
elastic model, which takes into account sub-ice seawater flow. The sub-ice seawater
flow was described by the wave equation, so the ice-shelf flexures result from the hy-
drostatic pressure perturbations in sub-ice seawater layer. The numerical experiments5

were performed for idealized ice-shelf geometry, which was considered in the numerical
experiments in Holdsworth and Glynn (1978). The ice-plate vibrations were modelled
for harmonic ingoing pressure perturbations and for a wide spectrum of the ocean swell
periodicities, ranging from infragravity wave periods down to periods of a few seconds
(0.004–0.2 Hz). The spectrums for the vibration amplitudes were obtained in this range10

and are published in this manuscript. The spectrums contain distinct resonant peaks,
which corroborate the ability of resonant-like motion in suitable conditions of the forcing.
The impact of local irregularities in the ice-shelf geometry to the amplitude spectrums
was investigated for idealized sinusoidal perturbations of the ice surface and the sea
bottom. The results of the numerical experiments presented in this manuscript, are15

approximately in agreement with the results obtained by the thin-plate model in the re-
search carried out by Holdsworth and Glynn (1978). In addition, the full model allows to
observe 3-D effects, for instance, vertical distribution of the stress components in the
plate. In particular, the model reveals the increasing in shear stress, which is neglected
in the thin-plate approximation, from the terminus towards the grounding zone with the20

maximum at the grounding line in the case of considered high-frequency forcing. Thus,
the high-frequency forcing can reinforce the tidal impact to the ice-shelf grounding zone
additionally exciting the ice fracture there.
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1 Introduction

Tides and ocean swells produce ice shelf bends and, thus, they can initiate break-
up of sea-ice in the marginal zone (Holdsworth and Glynn, 1978; Goodman et al.,
1980; Wadhams, 1986; Squire et al., 1995; Meylan et al., 1997; Turcotte and Schubert,
2002) and also they can excite ice-shelf rift propagation. Strong correlations between5

rift propagation rate and ocean swells impact have not revealed (Bassis et al., 2008),
and it is not clear to what degree rift propagation can potentially be triggered by tides
and ocean swells. Nevertheless, the impacts of tides and of ocean swells are the parts
of the total force (Bassis et al., 2008) that produces sea-ice calving processes in ice
shelves (MacAyeal et al., 2006). Thus, the understanding of vibrating processes in10

ice shelves is important from the point of view of investigations of ice-sheet-ocean
interaction and of sea level change due to alterations in the rate of sea-ice calving.

The modelling of ice-shelf bends and of ice-shelf vibrations were developed, e.g.
in Holdsworth and Glynn (1978), Goodman et al. (1980), Wadhams (1986), Vaughan
(1995), Turcotte and Schubert (2002), using the approximation of a thin plate. These15

models allow to simulate ice-shelf deflections and to obtain bending stresses emerging
due to the vibrating processes, and to assess possible effects of tides and ocean swells
impacts on the calving process. Further development of elastic-beam models for de-
scription of ice-shelf flexures implies the application of visco-elastic rheological models.
In particular, tidal flexures of ice-shelf were obtained using linear visco-elastic Burgers20

model in Reeh et al. (2003) and using the nonlinear 3-D visco-elastic full Stokes model
in Rosier et al. (2014).

Ice-stream response to ocean tides was described by full Stokes 2-D finite-element
employing a non-linear visco-elastic Maxwell rheological model by Gudmundsson
(2011). This modelling work revealed that tidally induced ice-stream motion is strongly25

sensitive to the parameters of the sliding law. In particular, a non-linear sliding law al-
lows the explanation of the ice stream response to ocean forcing at long-tidal periods
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(MSf) through a nonlinear interaction between the main semi-diurnal tidal components
(Gudmundsson, 2011).

A 2-D finite-element flow-line model with an elastic rheology was developed by O. V.
Sergienko (Bromirski et al., 2010; Sergienko, 2010) and was used to estimate mechan-
ical impact of high-frequency tidal action on stress regime of ice shelves. In this model5

seawater was considered as incompressible, inviscid fluid and was described by the
velocity potential.

In this work, the modelling of forced vibrations of a buoyant, uniform, elastic ice-
shelf, which floats in shallow water of variable depth, is developed. The simulations
of bends of ice-shelf are performed by a full 3-D finite-difference elastic model. The10

main aim of this work is to derive the eigen-frequencies of the system, which includes
the buoyant, elastic ice-shelf and the sea water under the ice-shelf, implying that, in
suitable conditions a resonant-like vibration can be induced by the incident ocean wave
(Holdsworth and Glynn, 1978; Bromirski et al., 2010). In other words, here we consider
the same mechanism for generating the bending stresses at locations along an ice-15

shelf far from the grounding zone due to vibration of the ice-shelf in a mode higher
than the fundamental (nontidal theory for ice-shelf fracture), like was considered in
(Holdsworth and Glynn, 1978). Furthermore, the attempt to apply the general elastic
theory instead of well-developed thin plate theory is launched here (in 3-D case).

2 Field equations20

2.1 Basic equations

The 3-D elastic model is based on the well-known momentum equations (e.g. Lamb,
1994; Landau and Lifshitz, 1986):
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∂σxx
∂x +

∂σxy
∂y + ∂σxz

∂z = ρ∂
2U
∂t2

;
∂σyx
∂x +

∂σyy
∂y +

∂σyz
∂z = ρ∂

2V
∂t2

;
∂σzx
∂x +

∂σzy
∂y + ∂σzz

∂z = ρ∂
2W
∂t2

;

0 < x < L;y1(x) < y < y2(x);hb(x,y) < z < hs(x,y)

(1)

where (x,y ,z) is a rectangular coordinate system with the x axis along the central line,
and the z axis pointing vertically upward; U ,V andW are two horizontal and vertical ice
displacements, respectively; σi j are the stress components; ρ is ice density; hb(x,y),
hs(x,y) are ice bed and ice surface elevations, respectively; L is the glacier length5

along the central line; y1(x), y2(x) are the lateral edges. In a common case of arbitrary
ice-shelf geometry, is supposed that the x axis direction is chosen so that the lateral
edges can be approximated by single-value functions (y1(x), y2(x)).

The sub-ice water is considered as an incompressible and nonviscous fluid of uni-
form density. Additional assumption is that the water depth changes slowly in horizontal10

directions. Under these assumptions the sub-ice water flows uniformly in a vertical col-
umn, and the manipulation with the continuity equation and the Euler equation yields
the wave equation (Holdsworth and Glynn, 1978)

∂2Wb

∂t2
=

1
ρw

∂
∂x

(
d0
∂P ′

∂x

)
+

1
ρw

∂
∂y

(
d0
∂P ′

∂y

)
; (2)

where ρw is sea water density; d0(x,y) is the depth of the sub-ice water layer;Wb(x,y ,t)15

is the ice-shelf base vertical deflection, and Wb(x,y ,t) =W (x,y ,hb,t); P ′(x,y ,t) is the
deviation from the hydrostatic pressure.

For harmonic vibrations the method of separation of variables yields the same equa-

tions, in which only the operator ∂2

∂t2
should be replaced with the −ω2, where ω is the

frequency of the vibrations, – for the x,y ,z dependent values. Likewise, the deforma-20

tion due to the gravitational forcing is excluded in the vibration problem, i.e. the term ρg
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as well as the suitable terms in the boundary conditions listed below are absent in the
final equations formulated for the vibration problem, for which the method of separation
of variables is applied.

2.2 Boundary conditions

The boundary conditions are (i) stress free ice surface, (ii) normal stress exerted by5

seawater at the ice-shelf free edges and at the ice-shelf base, (iii) rigidly fixed edge at
the origin of the ice-shelf (i.e. in the glacier along the grounding line). In detail, well-
known form of the boundary conditions, for example, at the ice-shelf base is expressed
as




σxz = σxx
∂hb
∂x +σxy

∂hb
∂y + P ∂hb

∂x ;

σyz = σyx
∂hb
∂x +σyy

∂hb
∂y + P ∂hb

∂y ;

σzz = σzx
∂hb
∂x +σzy

∂hb
∂y − P ;

(3)10

where P is the pressure (P = ρgH + P ′, H is ice-shelf thickness).
In the model, developed here, we considered the approach, in which the known

boundary conditions (Eq. 3) have been incorporated into the basic Eq. (1). A suitable
form of the equations can be written after discretization of the model (Konovalov, 2012)
and is shown below.15

In the ice-shelf forced vibration problem the boundary conditions for the water layer
are (i) at the boundaries coincided to the lateral free edges: ∂P

′

∂n = 0, where n is the unit
horizontal vector normal to the edges; (ii) at the boundary along the grounding line:
∂P ′

∂n = 0, where n is the unit horizontal vector normal to the grounding line; and (iii) at
the ice-shelf terminus the pressure perturbations are excited by the periodical impact20

of the ocean wave: P
′
= P ′0 sinωt.
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2.3 Discretization of the model

The numerical solutions were obtained by a finite-difference method, which based on
the coordinate transformation x,y ,z→ x,η = y−y1

y2−y1
,ξ = (hs−z)/H (e.g. Hindmarsh and

Hutter, 1988; Blatter, 1995; Hindmarsh and Payne, 1996; Pattyn, 2003). The coordinate
transformation transfigures an arbitrary ice domain into the rectangular parallelepiped5

Π= {0 ≤ x ≤ L;0 ≤ η ≤ 1;0 ≤ ξ ≤ 1}.
The numerical experiments with ice flow models and with elastic models (Konovalov,

2012, 2014) have shown that the method, in which the initial boundary conditions
(Eq. 3) being included in the momentum Eq. (1), can be applied in the finite-difference
models. In certain cases, the approach additionally provides the numerical stability of10

the solution. In this work the method has been applied in the developed 3-D elastic
model. For instance, after the coordinate transformation, the applicable equations at
ice-shelf base can be written as follows

(
∂σxx
∂x

)Nξ
+
(
η′x
∂σxx
∂η

)Nξ
+
(
ξ′x
∂σxx
∂ξ

)Nξ
+

(
η′y
∂σxy
∂η

)Nξ

+

(
ξ′y
∂σxy
∂ξ

)Nξ

(4)

− 1
H

1
2∆ξ

σ
Nξ−2
xz +

1
H

4
2∆ξ

σ
Nξ−1
xz − 1

H
3

2∆ξ

{
σxx

∂hb

∂x
+σxy

∂hb

∂y

}Nξ
15

− 1
H

3
2∆ξ

P ′
∂hb

∂x
≈ 3

2∆ξ
ρg
∂hb

∂x
+ρ

(
∂2U
∂t2

)Nξ

;

(
∂σyx
∂x

)Nξ

+

(
η′x
∂σyx
∂η

)Nξ

+

(
ξ′x
∂σyx
∂ξ

)Nξ

+

(
η′y
∂σyy
∂η

)Nξ

+

(
ξ′y
∂σyy
∂ξ

)Nξ

− 1
H

1
2∆ξ

σ
Nξ−2
yz +

1
H

4
2∆ξ

σ
Nξ−1
yz − 1

H
3

2∆ξ

{
σyx

∂hb

∂x
+σyy

∂hb

∂y

}Nξ
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− 1
H

3
2∆ξ

P ′
∂hb

∂y
≈ 3

2∆ξ
ρg
∂hb

∂y
+ρ

(
∂2V
∂t2

)Nξ

;

(
∂σzx
∂x

)Nξ
+
(
η′x
∂σzx
∂η

)Nξ
+
(
ξ′x
∂σzx
∂ξ

)Nξ
+

(
η′y
∂σzy
∂η

)Nξ

+

(
ξ′y
∂σzy
∂ξ

)Nξ

−

1
H

1
2∆ξ

σ
Nξ−2
zz +

1
H

4
2∆ξ

σ
Nξ−1
zz − 1

H
3

2∆ξ

{
σzx

∂hb

∂x
+σzy

∂hb

∂y

}Nξ

+
1
H

3
2∆ξ

P ′ ≈ − 3
2∆ξ

ρg+ρg+ρ

(
∂2W
∂t2

)Nξ

;

where index “Nξ” corresponds to grid layer located at the ice shelf base. Thus, the5

stress components σxz,σyz,σzz at the Nξ-layer have been replaced in the basic Eq. (1)
in agreement with the boundary conditions (Eq. 3). The same manipulations were per-
formed with the equations at the free edges and on the free surface.

2.4 Equations for ice-shelf displacements

Constitutive relationships between stress tensor components and displacements cor-10

respond to Hook’s law (e.g. Landau and Lifshitz, 1986; Lurie, 2005):

σi j =
E

1+ ν

(
ui j +

ν
1−2ν

ul lδi j

)
, (5)

where ui j are the strain components.
Substitution of these relationships into Eqs. (1) and (4) gives final equations of the

model.15
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3 Results of the numerical experiments

The numerical experiments with ice-shelf forced vibrations were carried out for a phys-
ically idealized ice plate with trapezoidal profile (Fig. 1a). The ice plate is 14 km long,
1.5 km wide and ice thickness decreases from 355 to 71 m. This tapering ice plate
approximately coincides with the shape of the Erebus Glacier Tongue, which was con-5

sidered in the free vibration problem in Holdsworth and Glynn (1978). Figure 1b and
d shows the “rolled” ice surface and the “bumpy” seabed, respectively. These comple-
mentary geometries were considered with intent to investigate the impact of the pertur-
bations on the spectrums (on the eigen-frequencies of the system). In the experiment
with rolled surface, in fact, the sinusoidally perturbations of the ice-shelf thickness were10

considered and were expressed as

H = H0 +∆H0 +∆H sin(n2πx/L) , (6)

where H0 is the origin ice-shelf thickness. Thus, the surface elevation in Fig. 1b varies

in agreement with the expression hs = H
(

1− ρ
ρw

)
.

Figure 2 shows the amplitude spectrums (amplitudes of the flexures vs. the frequen-15

cies of the vibrations). The peaks in Fig. 2 correspond to the eigen-frequencies of the
system, which includes ice-shelf and sub-ice water layer. About nine resonant peaks la-
belled in Fig. 2, can be distinguished in the part of the spectrum, which corresponds to
the ocean swells with periods from 5 to 45 s. For instance, we can select three eigen-
frequencies, which are close to those that were selected in Holdsworth and Glynn20

(1978). They are approximately equal to 0.067, 0.051, 0.037 Hz, respectively. The cor-
responding periodicities are equal to 14.9, 19.7, 27.1 s vs. the periodicities of 16.0,
20.2, 24.2 s derived in the thin-plate model in Holdsworth and Glynn (1978), i.e. the
relative deviation does not exceed 12 %.

Curves 2 and 3 are the amplitude spectrums, which were obtained for the “rolled” ice25

surface (Fig. 1b) and the “bumpy” sea bottom (Fig. 1c), respectively. The two experi-
ments illustrate the impact of the perturbations in the topographies on the spectrum,
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which reveals some shifts of the amplitude peaks and/or appearance of complemen-
tary peaks in comparison with the basic spectrum. The shifts of peaks are observed in
the case of “rolled” surface (curve 1 and curve 2 in Fig. 2). This impact is the result of
the change in ice-shelf effective thickness (in the model the change is equal to ∆H0 in
Eq. 6). In the case of “bumpy” sea bed the resonant peaks are aligned with the peaks5

in the basic spectrum (curve 1 and curve 3 in Fig. 2), but the complementary peaks
appear in the spectrum.

The flexures of the ice-plate for the three selected modes are shown in Fig. 3, re-
spectively.

The number of nodes/antinodes in Fig. 3 in x direction roughly corresponds to the10

number of the ones, which can be distinguished in the flexures shown in Fig. 2 in
Holdsworth and Glynn (1978).

Figure 4 shows the longitudinal stress component σxx and the shear stress com-
ponent σxz, respectively, along the centerline for the second mode shown in Fig. 3b.
Maxima/minima of the longitudinal stress coincide with the antinodes, vice versa, max-15

ima/minima of the shear stress coincide with the nodes (Fig. 4). The magnitude of the
shear stress in the maxima/minima an order less than the magnitude of the longitudinal
stress (Fig. 4).

4 Summary

The ice-shelf forced vibrations modelling can be performed by 3-D full elastic model,20

although the volume of the routine sufficiently increases in comparison with the thin-
plate model.

The numerical experiments have shown the impact of ice surface/sea bottom topog-
raphy on the amplitude spectrum. The alterations of the topographies excite the shifts
of the peak positions. The effect can be explained due to changes in ice effective thick-25

ness (Holdsworth and Glynn, 1978). Therefore, the ability of prediction of resonant-like
ice-shelf motion requires accounting for (i) detailed ice-shelf surface/base topography
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(ii) detailed numbers and positions of the crevasses (iii) detailed seafloor topography
under the ice-shelf.

The complementary shear stress, which can be derived in the full model, in the
case of high-frequency free vibrations are an order of magnitude less in the maximum
than the maximal value of the σxx component. Thus, in general, the analysis of shear5

stresses justifies the application of the thin plate theory in the case of high-frequency
vibrations, when the ice displacements are relatively small. Nevertheless, the results,
evidently, maintain the fact what the shear stresses should reinforce the dislocations
in the nodes (of the mode), wherein shear stresses reach the local maxima/minima
(Fig. 4b). Furthermore, the 3-D model reveals the maximum of the shear stresses at10

the grounding line (at the fixed edge of the plate), thus the high-frequency vibrations
can reinforce the tidal impact in the grounding zone.

In the forced vibration problem, in which the dissipative factors are neglected, the
amplitudes in the peaks (Fig. 2), in general, are undefined (unlimited). To modelling the
realistic finite motion in the peaks, we can consider limitation of the ingoing overall water15

flux in the model, which is based on the original equations for the water layer (continuity
equation and Euler equation). This model includes applicable boundary conditions for
ingoing water flux and, hence, yields the specific amplitude spectrums with limited
amplitudes in the resonant peaks (Konovalov, 2014).

The shape of the plate deflection obtained at a frequency, which is beside the20

eigenvalue, depends on the type of the boundary conditions applied at the lateral
edges. Specifically, the staggered order for nodes and antinodes, which is observed
in the modes obtained in the free vibration problem (Holdsworth and Glynn, 1978),
likewise, can be obtained in the full model wherein the pressure perturbations are
applied at the lateral edges (Fig. 5). If the pressure perturbations are expressed as25

P ′ = P ′0 cos(kx+α), the ice-shelf deflection takes the shape (for some peaks), when
the nodes/antinodes follow in a staggered order (Fig. 5). However, the spatial and the
temporal variables, evidently, can not be separated in the ocean surface wave, which
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is described as P ′ = P ′0 cos(ωt+kx+α), thus, the boundary condition ∂P ′

∂n = 0 at the
lateral edges was considered as the basic.

The observations on the Ross Ice Shelf have shown that more significant mechani-
cal impacts on the Ross Ice Shelf result from the infragravity waves with periods from
about 50 to 250 s (Bromirski et al., 2010). These waves are generated along continen-5

tal coastlines by nonlinear wave interactions of storm-forced shoreward propagating
swells (Bromirski et al., 2010). The model developed here reveals five distinct reso-
nance peaks in the infragravity part of the spectrum (Fig. 6). The results of the mod-
elling prove the conjecture about the possible resonant impact of the infragravity waves
to the Antarctic ice-shelves.10

Thus, the full 3-D model yields to qualitatively same results, which were obtained
in the model based on the thin-plate approximation (Holdsworth and Glynn, 1978).
In addition, the full model allows to observe 3-D effects, for instance, vertical distri-
bution of the stress components. In particular, the full model reveals the increasing
in shear stress, which is neglected in the thin-plate approximation, from the terminus15

towards the grounding zone with the maximum at the grounding line in the case of
high-frequency forcing.
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 313 
Fig. 1,b 314 

 315 
Fig. 1,c 316 

 317 

Fugure 1: a – Ice-shelf centre-line cross-section. Ice-shelf thickness at fixed end (at grounding 318 

line) is equal to 355 m and tapers to 71 m at the terminus (Holdsworth and Glynn, 1978); b – Ice-319 

shelf “rolled” surface (sinusoidally perturbed in x-direction surface); c – “bumpy” sea bed 320 

(sinusoidally perturbed sea bed).  321 
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Figure 1. (a) Ice-shelf centre-line cross-section. Ice-shelf thickness at fixed end (at ground-
ing line) is equal to 355 m and tapers to 71 m at the terminus (Holdsworth and Glynn, 1978);
(b) ice-shelf “rolled” surface (sinusoidally perturbed in x direction surface); (c) “bumpy” sea bed
(sinusoidally perturbed sea bed).
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 329 
 330 

 331 

 332 

Fugure 2. The amplitude spectrums – maximal ice-shelf deflection versus ocean wave 333 

periodicity. Curve 1 (red color) is the amplitude spectrum obtained for the origin geometry of the 334 

system (Fig. 1,a). Curve 2 (blue color) is the amplitude spectrum obtained for “rolled” ice surface 335 

(Fig. 1,b). Curve 3 (green color) is the amplitude spectrum obtained for “bumpy” sea bed (Fig. 336 

1,c). Amplitude of the incident wave is equal to 1m. 337 
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Figure 2. The amplitude spectrums – maximal ice-shelf deflection vs. ocean wave period-
icity. Curve 1 (red color) is the amplitude spectrum obtained for the origin geometry of the
system (Fig. 1a). Curve 2 (blue color) is the amplitude spectrum obtained for “rolled” ice sur-
face (Fig. 1b). Curve 3 (green color) is the amplitude spectrum obtained for “bumpy” sea bed
(Fig. 1c). Amplitude of the incident wave is equal to 1 m.
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 344 
Fig. 3,b 345 

 346 

 347 
Fig. 3,c 348 

 349 

Figure 3. Ice-shelf deflections obtained for the three modes: a) period is equal to 14.9 s; b) 350 

period is equal to 19.7 s; c) period is equal to 27.1 s. Young's modulus GPaE 9 , Poisson's 351 

ratio 33.0  (Schulson, 1999).   352 
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Figure 3. Ice-shelf deflections obtained for the three modes: (a) period is equal to 14.9 s; (b) pe-
riod is equal to 19.7 s; (c) period is equal to 27.1 s. Young’s modulus E = 9 GPa, Poisson’s ratio
ν = 0.33 (Schulson, 1999).
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 353 
Fig. 4,a 354 

 355 
Fig. 4,b 356 

 357 

Figure 4. The distributions of (a) longitudinal stress xx  and (b) shear stress 
xz  along the 358 

centerline. The stress distributions correspond to the second mode, which is shown in Fig. 3,b.  359 
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Figure 4. The distributions of (a) longitudinal stress σxx and (b) shear stress σxz along the
centerline. The stress distributions correspond to the second mode, which is shown in Fig. 3b.
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 361 
Fig. 5,a 362 

 363 

 364 
Fig. 5,b 365 

 366 

Figure 5. Ice-shelf deflections obtained for the boundary conditions at the lateral edges, which is 367 

formulated for the spatially-periodic pressure perturbations :   kxPP cos0 ; a) period is 368 

equal to 28.4 s; b) period is equal to 41.8 s. The periodicities correspond to the resonant peaks. 369 

Young's modulus GPaE 9 , Poisson's ratio 33.0 .  370 
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Figure 5. Ice-shelf deflections obtained for the boundary conditions at the lateral edges, which
is formulated for the spatially-periodic pressure perturbations: P ′ = P ′0 cos(kx +α); (a) period
is equal to 28.4 s; (b) period is equal to 41.8 s. The periodicities correspond to the resonant
peaks. Young’s modulus E = 9 GPa, Poisson’s ratio ν = 0.33.
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 383 
 384 

 385 

Figure 6. The infragravity part of the amplitude spectrum. The periodicity of infragravity ocean 386 

waves ranges from 50 s to 250 s (Bromirski et al., 2010). 387 
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Figure 6. The infragravity part of the amplitude spectrum. The periodicity of infragravity ocean
waves ranges from 50 to 250 s (Bromirski et al., 2010).
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