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Abstract

The recent thinning and shrinking of the Arctic sea ice cover has increased the interest
in seasonal sea ice forecasts. Typical tools for such forecasts are numerical models
of the coupled ocean sea ice system such as the North Atlantic/Arctic Ocean Sea
Ice Model (NAOSIM). The model uses as input the initial state of the system and the
atmospheric boundary condition over the forecasting period. This study investigates the
potential of remotely sensed ice thickness observations in constraining the initial model
state. For this purpose it employs a variational assimilation system around NAOSIM
and the Alfred Wegener Institute’s CryoSat-2 ice thickness product in conjunction with
the University of Bremen’s snow depth product and the OSI SAF ice concentration and
sea surface temperature products. We investigate the skill of predictions of the summer
ice conditions starting in March for three different years. Straightforward assimilation
of the above combination of data streams results in slight improvements over some
regions (especially in the Beaufort Sea) but degrades the over-all fit to independent
observations. A considerable enhancement of forecast skill is demonstrated for a bias
correction scheme for the CryoSat-2 ice thickness product that uses a spatially varying
scaling factor.

1 Introduction

The state of the Arctic climate system is rapidly changing (Stroeve et al., 2007).
This change is impacting ecosystems, coastal communities, and economic activities.
In this context, high-quality predictions of the ice conditions are of paramount inter-
est (AMAP, 2011). This topic is addressed, for example, by the Sea Ice Outlook
(http://www.arcus.org/sipn/sea-ice-outlook). In this activity, various research groups
are applying different approaches to predict the Arctic summer minimum sea ice ex-
tent based on the state of the Arctic system at the beginning of the melting season
(around May/June). The range of approaches extends from heuristic techniques, sta-
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tistical models, coupled sea ice ocean models to fully coupled models of the atmo-
sphere sea ice ocean system. An analysis of Stroeve et al. (2014) shows that none
of the approaches outperforms its competitors. In general, however, due to the rapid
transition of the Arctic system, the validity of heuristic and statistical relationships de-
rived from the past may be limited (Holland and Stroeve, 2011). In contrast, dynamical
models that include all relevant processes should be able to handle such transitions al-
though the values of their process parameters are based on past observations. While
some of the dynamical models (fully coupled models) include an atmospheric com-
ponent (see, e.g. Wang et al., 2013; Chevallier et al., 2013; Sigmond et al., 2013),
other models are restricted to the sea ice—ocean system (sea ice—ocean models,
see, e.g. Zhang et al., 2008; Lindsay et al., 2012; Massonnet et al., 2015). The lat-
ter class of models are driven with prescribed atmospheric fields, provided, e.g., by
atmospheric forecasting/numerical weather prediction centres. These fields are typi-
cally constrained by a range of atmospheric observations and are thus probably more
realistic than those computed by a fully coupled model. On the other hand, fully coupled
models allow a consistent simulation of the feedback loops through all components of
the atmosphere—sea ice—ocean system.

Predictions by a dynamical model depend on the state of the system at the beginning
of the simulation period (initial state). Previous studies have highlighted the role of the
initial ice thickness distribution (Kauker et al., 2009; Holland and Stroeve, 2011; Lind-
say et al., 2012; Chevallier and Salas-Mélia, 2012) for the forecast quality. Systematic
use of observational information in a data assimilation system can help to derive an
improved estimate of the initial state (Lindsay et al., 2012; Chevallier et al., 2013; Yang
et al., 2014; Massonnet et al., 2015).

The present article describes the construction of an assimilation and prediction sys-
tem of the Arctic sea ice conditions. Observational data streams for such a prediction
system have to be available near real time. We use four data streams which fulfill this
requirement, namely, the OSI SAF sea ice concentration and sea surface temperature
products, a snow depth product provided by the University of Bremen, and the CryoSat-

5523

2 ice thickness product derived at the Alfred Wegener Institute (AWI). The availability
of the above data streams is limited to the period from 2012 to 2014. Also there is only
one single two month period per year (March and April) for which the CryoSat-2 product
is currently available (and note that the followup version covers October to April/May).
We thus restrict our study to assimilation of the above four data streams in the spring of
each of the three years and to prediction of the ice conditions in the following summer.

The assimilation system is built around the regional North Atlantic/Arctic Ocean Sea
Ice Model (NAOSIM, Gerdes et al., 2003; Kauker et al., 2003). Initial tests indicated that
the model was not sufficiently calibrated to achieve the required high simulation quality.
Hence, in a preliminary step, some of the process parameters in the formulation of
our model were adapted to better match observations over the 19year period from
1990-2008. Furthermore, it turned out that the assimilation system was not capable
of integrating the information in the above-mentioned CryoSat-2 ice thickness product
to a sufficient degree. Through a set of additional assimilation experiments, we were
able to develop a so-called bias correction scheme that allowed to take full advantage
of this data stream.

2 Methods

2.1 Assimilation

NAOSIMDAS is a variational assimilation system that estimates a control vector x
through minimisation of a cost function J(x) that quantifies the fit to all observations
plus the deviation from prior knowledge on x:

J0x) = 5 [(M0) - 0) (0 (M)~ )+ (x = x0) Clxo) ™ (x - ) (1)

where M denotes the model, considered as a mapping from the control vector to obser-
vations, d the observations with data uncertainty covariance matrix C(d), x, the vector
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of prior values of the control variables with uncertainty covariance matrix C(x,), and
the superscript T is the transposed. The control variables are typically a combination
of the initial state, the atmospheric forcing and the process parameters. In this study
the control vector is restricted to the model’s initial state.

The data uncertainty C(d) reflects the combined effect of observational C(d,,s) and
model error C(dpoq):

C(d)? = C(dops)® + C(Amoa)*- )

C(dmoq) Captures all uncertainty in the simulation of the observations except for the
uncertainty in the control vector, because this fraction of the uncertainty is explicitly
addressed by the assimilation procedure through correction of the control vector. In
this study we assume that C(d,s) considerably exceeds C(d,,.q) and neglect the latter.
The non-diagonal elements of C(d,,s) are assumed to be zero (no correlation of the
uncertainty of different components of the observation vector). The same is assumed
for the prior uncertainty, C(x).

Technically, the cost function is minimised by a gradient algorithm. The algorithm it-
eratively uses the gradient of the cost function, which is efficiently provided by so-called
adjoint code of NAOSIM (Kauker et al., 2009) generated by the automatic differentiation
tool TAF (Giering and Kaminski, 1998).

2.2 Observations

This study assesses the potential of remotely sensed observations of the sea ice and
ocean system to increase the skill of seasonal predictions of that system through ini-
tialisation of NAOSIM. For this purpose, the data streams have to be available oper-
ationally or have to become operational in the near future. EUMETSAT’s Ocean and
Sea Ice Satellite Application Facility (OSI SAF) operationally provides sea ice concen-
tration and sea surface temperature. Currently available sea ice thickness products are
derived from SMOS (Kaleschke et al., 2012) and CryoSat-2 (Wingham et al., 2006).
While the SMOS product copes better with thin ice, CryoSat-2 copes better with thick
5525

ice. As thinner ice tends to be completely melted in summer, we expect the informa-
tion on thicker ice to be more important in our context and select a CryoSat-2 product,
namely the one provided by the Alfred Wegener Institute (Ricker et al., 2014). A snow
depth product is provided by the University of Bremen. The above data sets allow to
perform data assimilation experiments starting in March for each of the years 2012 to
2014 and will be described in more detail below.

As mentioned above, a preliminary step consists in the calibration of the model
against observations (labeled historical) over the period from 1990-2008 (calibration
period). Operational availability of the data products was obviously not required. We
use remotely sensed sea ice concentration provided by OSI SAF, sea ice thickness
from ICESat provided by JPL, and two drift products. A detailed description of the
products is provided below.

2.2.1 Historical data sets

The only data stream available all year for the entire calibration period is the re-
processed OSI SAF ice concentration product (Eastwood et al., 2015). It is available
in daily temporal and 10km spatial resolution and includes spatially and temporally
varying uncertainty estimates o(d,,s) as required by Eq. (1).

The ICESat-JPL ice thickness (available in February/March and October/November
from 2003 to 2008) is available at about monthly temporal and 25 km spatial resolution
and does not include an uncertainty estimate. Kwok and Cunningham (2008) estimate
a mean error of about 50 cm, corresponding to a relative error of about 40 %. For the
present study we thus use 40 % relative uncertainty but completely exclude observa-
tions below 1 m (as the uncertainty increases for thin ice). ICESat-JPL thickness data
are omitted where the difference to the ICESat thickness product provided by the God-
dard Space Flight Center (ICESat-GSFC, Zwally et al., 2008) exceeds 40 cm.

The OSI SAF winter ice drift product (Lavergne et al., 2010) is available at bi-daily
temporal and 62.5km spatial resolution but does not include uncertainty estimates.
In the present study we use the monthly mean value and corresponding uncertainty
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estimates of Sumata et al. (2014). This data set covers the winter season (October to
April) for the period from October 2003 to December 2006.

The KIMURA summer ice drift product (Kimura et al., 2013) is available at daily tem-
poral and 75 km spatial resolution and does not include uncertainty estimates either.
As for the winter ice drift we use monthly mean values and uncertainty estimates de-
rived by Sumata et al. (2015). The data set covers the summer months May to July for
the years 2003 to 2007.

2.2.2 Operational products

The operational OSI SAF ice concentration product is available at daily temporal and
10 km spatial resolution and based on the combination of the Comiso frequency mode
(CF) algorithm and the Bristol (BR) algorithm. Both products use the 19 and 37 GHz
channels, with respective native resolutions (footprints) of about 60 and 30 km. The
product does include discrete quality flags (while the followup product will provide an
uncertainty estimate). For this study an uncertainty estimate is derived by a procedure
that was developed within the Sea Ice project (http://esa-cci.nersc.no/) of ESA’s Cli-
mate Change Initiative (SICCI). The procedure considers the algorithmic uncertainty
and a so-called “smearing uncertainty”. The algorithmic uncertainty o, i.e. the uncer-
tainty derived by propagating radiometric noise through the algorithm, is only available
in the re-processed OSI SAF concentration product. As it hardly exceeds 6 percentage
points in the re-processed product, this value is used for all grid cells and all days as
a conservative estimate of the algorithmic uncertainty. The (spatially and temporally
variable) smearing uncertainty reflects the combination of two sources of error: first,
the error caused by providing a 10 km product from coarser native resolutions, and,
second, the error caused by combining channels with different footprints. An estimate
of this uncertainty is calculated by comparing high resolution SIC aggregated to 10 km
resolution (reference) and that computed at the SSMI footprints using both, the CF and
the BR algorithm. The empirical formula o, = VSD/2.2 (see Fig. 1) provides an approx-
imation of the root mean squared difference as a function of the 3 x 3 standard deviation
5527

SD (grid point and eight surrounding grid points). Assuming the independence of both

uncertainties the total observational uncertainty is given by 6(dys) = \/02 + 02.

The OSI SAF high latitude SST product (Eastwood, 2011a) has a resolution of 5 km
and is produced twice daily at 00:00 and 12:00 UTC. It covers the Atlantic Ocean from
50 to 90° N, with the exception of areas covered by ice or clouds. A constant uncertainty
of 0.5K is applied (Eastwood, 2011b).

AWI's CryoSat-2 ice thickness product is provided on a monthly temporal and 25 km
spatial grid, including an ice type classification into first-year and multi-year ice, which
is adopted by the OSI SAF ice type product (Eastwood et al., 2015). The main source
of systematic uncertainty in the CryoSat-2 ice thickness retrieval is due to the selection
of the return-power threshold value in the retracker algorithm (Ricker et al., 2014). This
algorithm is essential to derive the actual range measurement from the radar-return
signal. Therefore, a return-power threshold is used at the first maximum of the echo
power distribution to retrieve the range estimate, which is then used to calculate sea ice
thickness. In order to estimate this algorithm uncertainty, we use a small ensemble of
ice thickness values retrieved by Ricker et al. (2014) for three different thresholds with
40, 50, and 80 % (range of value in the literature) of the first maximum of the radar echo
power. For the present study we use the ice thickness retrieved with the 50 % threshold
as it provides the best match to the ice thickness, simulated by (the recalibrated version
of) NAOSIM. The standard deviation of this ensemble over first-year ice is about 20 %
and over multi-year ice about 50 %. We use these two values as relative uncertainties
of the ice thickness for the respective ice types.

A snow depth product on the NAOSIM grid is provided by the University of Bremen.
It has a daily temporal resolution and includes uncertainty estimates. The basis is an
algorithm following Markus and Cavalieri (1998), which is applicable to level ice under
non-melting conditions. To mask out areas where these conditions are not met, the
radar backscatter at 5.3 GHz (C band) is used as it is increased in melting conditions
and for rough ice. Here, a threshold of —13dB for the normalised radar backscatter-
ing cross section is used. On first-year ice the maximum of the following three uncer-
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tainty estimates is used: (1) a value of 6cm as estimated from a comparison with the
NASA ice bridge mission (Kurtz et al., 2013a, b), (2) a value derived by Gaussian error
propagation from the radiometric error of the input data (satellite brightness tempera-
tures) and the uncertainty of the retrieval parameters, (3) the standard deviation of the
most recent five days of retrieved snow depths. On multi-year ice and under melting-
conditions a very large uncertainty of 5m is applied.

2.3 NAOSIM

NAOSIMDAS is constructed around the North Atlantic/Arctic Ocean Sea Ice Model
(NAOCSIM) (Kauker et al., 2003). The model is derived from version 2 of the Mod-
ular Ocean Model (MOM-2) of the Geophysical Fluid Dynamics Laboratory (GFDL).
The version of NAOSIM used here has a horizontal grid spacing of 0.5° on a rotated
spherical grid. The rotation maps the 30° W meridian onto the equator and the North
Pole onto 0° E. In the vertical it resolves 20 levels, their spacing increasing with depth.
The ocean model is coupled to a sea ice model with viscous-plastic rheology (Harder,
1996). At the open boundary near 50° N the barotropic oceanic transport is prescribed
from a coarser resolution version of the model that covers the whole Atlantic north of
20° S (K6berle and Gerdes, 2003).

The state of the model comprises five fields, namely ocean temperature and salinity
(velocities are diagnostic), ice thickness and concentration (drift is diagnostic) as well
as snow depth. These five fields form the control vector x in our assimilation system
described in Sect. 2.1.

In contrast to the version described by Kauker et al. (2003), the present version
uses a modified atmospheric forcing data set consisting of 10 m-wind velocity, 2 m-air
temperature, 2 m-specific humidity, total precipitation, and downward solar and thermal
radiation. For the period from 1979 to 2010 the forcing is taken from the National Cen-
ter for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (NCEP-
CFSR) (Saha and et al., 2010) and for the period from 2011 to the end of 2014 from
the NCEP Climate Forecast System version 2 (CFSv2) (Saha and et al., 2014).
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The initial state of 1 January 1980 is taken from a hindcast from 1 January 1948
to 31 December 1979. As in Kauker et al. (2003) this hindcast run was forced by the
NCEP/NCAR reanalyses (Kalnay et al., 1996) and, in turn, initialized from PHC Steele
et al. (2001) (ocean temperature and salinity), zero snow depth, and a constant ice
thickness of 2m with 100 % ice concentration where the air temperature is below the
freezing temperature of the ocean’s top layer.

The above-described historical data sets were used to estimate a sub-set of the
sea ice—ocean model’s process parameters, with focus on parameters that influence
the ice dynamics. These are the atmospheric drag coefficient (cdair), the oceanic drag
coefficient (cdwat), the ice strength parameter (p”), the parameter that determines the
dependence of the ice pressure on the ice concentration (¢*) and the parameter that
determines the ellipsoid of the rheology (eccen) that represents the ratio of the normal
stress and the shear stress. Additionally the vertical ocean tracer mixing parameter
kappa,, is adjusted.

In our model we observe a memory of the Arctic sea ice system in the range of 7 to 10
years. We thus performed model runs over the 29 year period from January 1980 until
end of December 2008, skipped the first 10 years, and evaluated the (quasi) equilibrium
response for the remaining 19 years (calibration period).

The performance of the model is evaluated in terms of its weighted fit (as defined by
the first term of Eq. 1) to observed sea ice concentration, ICESat-JPL ice thickness,
winter ice drift from OSI| SAF, and summer ice drift from KIMURA as described above
(Table 1). For the computation of the total misfit, each term is normalised to yield a value
of 1 for the standard configuration, in order to achieve an equal weighting of the terms
despite their varying number of observations. By this procedure we find a configuration
that reduces the misfit of ice thickness and ice drift strongly but increases the misfit
of ice concentration, especially in winter where the ice margin is located too far south.
Because here we are interested in the seasonal predictions of summer ice conditions,
this deficit is tolerated. In the following we call this configuration newNAOSIM.
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PIOMAS 2.1 (Zhang and Rothrock, 2003), an Arctic sea ice—ocean model which uses
Optimal Interpolation to assimilate ice concentration and sea surface temperature, is
often used as a reference, because it is well validated (see e.g. Schweiger et al., 2011).
Its misfit to ice thickness and ice drift is added to Table 1. NewNAOSIM performs slightly
worse than PIOMAS2.1 with respect to ice thickness and better with respect to ice drift.

Another reference is TOPAZ4 (Sakov et al., 2012) which uses an Ensemble Kalman
filter to assimilate satellite observed sea level anomaly, sea surface temperature, sea
ice concentrations from AMSR-E (NSIDC), sea ice drift products from CERSAT and
Coriolis in-situ temperature and salinity profiles. NewNAOSIM outperforms TOPAZ4
with respect to ice thickness and ice drift (Table 1).

The deviations of the climatologies of newNAOSIM, PIOMAS2.1, and TOPAZ4 from
the IceSat-JPL climatology (Fig. 2) (from 2003 to 2008) reveal similarities between
newNAOSIM and PIOMAS2.1 (compare Schweiger et al. (2011), Fig. 6). Both show too
thick ice in the Beaufort Sea in February/March and too thin ice north of the Canadian
Archipelago and north of Greenland and north of Fram Strait in February/March and
October/November when compared to ICESat-JPL. This is very remarkable because
both simulations differ in terms of model formulation and parameterizations and atmo-
spheric forcing (NCEP-CFSR in case of NAOSIM and NCEP in case of PIOMAS2.1
which differ considerably for some variables, see e.g. Lindsay et al., 2014). In contrast
to newNAOSIM and PIOMAS2.1 in February/March TOPAZ4 exhibits a large nega-
tive bias in the Eurasian Basin, especially north of Fram Strait. In October/November
TOPAZ4 is closer to newNAOSIM and PIOMAS2.1. The ice thickness of newNAOSIM,
PIOMAS2.1, and TOPAZ4 for September 2007 is shown in Fig. 3. Although new-
NAOSIM uses no assimilation of sea ice or ocean observations the pattern of the sea
ice cover deviates not stronger from PIOMAS2.1 and TOPAZ4 than PIOMAS2.1 devi-
ates from TOPAZ4 (although both models use assimilation of ice concentration from
NSIDC).

The sea ice area in September for newNAOSIM is in good agreement with three
different observational data streams (Fig. 4). The minima in 2007 and 2013 and the
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long-term trend are captured by the model. The largest deviations occur between 1998
and 2003 where the model overestimates the sea ice area. As this strong deviation
is absent when forced with the NCEP reanalysis (not shown) this can be attributed to
deficits in the NCEP-CFSR surface forcing.

3 Experiments

In this section three different sets of experiments are described: The first set performs
a straightforward initialisation through simultaneous assimilation of all four data streams
described in Sect. 2.2.2. The second set uses all data streams but the ice thickness,
and aims at reconstructing ice thickness fields that are consistent with those three data
streams and the model. Based on these reconstructed fields a bias correction scheme
for CryoSat-2 ice thickness is derived and applied in the final set of experiments.

3.1 Straightforward initialisation

We assimilate CryoSat-2 ice thickness (50 % retracker threshold), ice concentration,
snow depth and SST with uncertainties as described in Sect. 2.2.2. We perform three
experiments, one for each of the years for 2012 to 2014, and in each year use a two-
month assimilation window from 1 March until 30 April. The costfunction contribution
from Cryosat-2 ice thickness, the data stream in the focus of this study, is based on
monthly-mean values, while the contributions from the other data streams are based
on daily values. This would result in a substantially lower weight of the ice thickness
contribution. We artificially increase its weight by a factor of 180 to ensure that this
contribution has the same order of magnitude as the other terms.

In all three experiments, the iterative minimisation procedure of our assimilation sys-
tem achieves a substantial reduction of the cost function gradient in 50 to 70 iterations.
For each experiment, Fig. 5 shows the total costfunction and the contributions of all four
data streams and the prior separately before (a priori) and after the last iteration (a pos-
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teriori). The contributions from ice thickness and snow depth are strongly decreased,
and for ice concentration and SST the decrease is slightly weaker.

For each experiment, the March ice thickness of CryoSat-2 of the prior run (with
a priori control vector) and the posterior run (with a posteriori control vector) are shown
in Fig. 6. The Beaufort Sea, the East Siberian Sea and in the Kara and Laptev Seas
exhibit the largest change from prior to posterior. In March 2014, both prior and pos-
terior simulations show (consistent with CryoSat-2) thicker ice north of the Canadian
Archipelago and north of Greenland than in 2012 and 2013. With the exception of the
area east of Greenland which is of less interest for this study, strong differences be-
tween the posterior run and Cryosat-2 are restricted to the area north of Fram Strait
towards the pole and the 2012 experiment. This residual misfit can be traced back to
an inconsistency between observed ice concentration and thickness (and the model):
as the simulated ice concentration in winter and spring in the Greenland Sea is too high
(and, thus, the ice margin too far south) the assimilation responds by a reduction of ice
thickness north of Fram Strait towards the pole, reflecting the pathway of the Transpo-
lar Drift in the model. In other words: the prize we have to pay for a more reliable ice
margin is a misfit to the CryoSat-2 ice thickness. Especially in March 2012 CryoSat-2
is showing very thick ice next to and along the described pathway (Fig. 6a) which is
obviously not consistent with the model’s ice margin (and ice dynamics).

As we assimilate only data in March and April, the observations for the subsequent
months (when available) provide independent information that we can use to assess
the forecast skill prior and posterior to the assimilation. Our skill score is the squared
misfit weighted by the reciprocal of the squared uncertainty (as in the definition of the
cost function, but without the extra scaling factor for the ice thickness contribution). For
each experiment Fig. 7 shows the prior and posterior cost function contributions per
data stream and month from March to December. In all experiments, for March and
April (i.e. in the assimilation window) the contribution of CryoSat-2 is strongly reduced
in the posterior run. In November, however, the skill of the posterior run is reduced for
the 2012 and 2013 experiments, and only slightly increased for 2014. The skill for snow

5533

depth simulation is strongly increased from March to June in 2012 and 2013, for 2014
is was already good in the prior. The period from July to September is less relevant,
because there is little snow left. The skill for SST improves somewhat in March and
April.

The posterior ice concentration has an increased skill in March and April. In the
subsequent months the situation is mixed, at least Arctic-wide. We can, however, iden-
tify regions of increased and reduced skill as is illustrated by Fig. 8, which shows the
September concentration misfit for the prior (row 1) and the posterior (row 2) simula-
tions. For example, the skill in the Beaufort Sea and north of the Chukchi plateau is
increased, while the skill over the Eurasian basin is decreased.

3.2 Reconstruction

Our next set of (three) experiments explores the feasibility of inferring an initial ice thick-
ness distribution on 1 March that is consistent with the summer ice concentration for
each of the years 2012 to 2014. We, hence, use an extended assimilation window from
1 March to 30 September and assimilate ice concentration from 1 July to 30 September
together with snow depth and SST which we assimilate from March to September. We
do not use any ice thickness observations. We use the same control vector as in the
straightforward assimilation.

In each experiment the posterior March ice thickness exceeds the CryoSat-2 obser-
vations in large parts of the Arctic (see Fig. 6, rows 3 and 1). Areas with similar values
as CryoSat-2 are the southern parts of the Beaufort Sea, the Chukchi Plateau, and
the Kara and Laptev Seas. Over the Eurasian Basin slope except for areas north of
the Laptev Sea the posterior ice thickness falls below CryoSat-2. Apparently high ice
thickness values are required to match the ice concentration in summer which is shown
in row 3 of Fig. 8. Note that, compared to the straightforward initialisation experiments
here the ice margins are matching. Animations of ice thickness and concentration show
that the improved match over the Eurasian Basin slope is caused by increased initial
ice thickness north of the Laptev Sea (see row four in Fig. 6).
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We can now compare our skill metrics, i.e. the cost function contributions per data
stream and month from March to December (Fig. 9) with that for the straightforward
initialisation (Fig. 7). The skill for ice concentration (panel b) is considerably increased
from July to September (assimilated) but also from March to June (not assimilated).
The skill is, however, already lost in October, probably because of the freezing of sea
ice, which is not constrained by any satellite observations of the sea ice. Compared to
the prior, the skill for Cryosat-2 data (panel a) is strongly reduced for March and April
but only weakly reduced for November. The skill of snow depth is very similar to that of
the straightforward initialisation. The fit to SST shows some improvement from May to
August, compared to the prior and to the straightforward assimilation. This is probably
an effect of the extended assimilation window, and maybe rather driven by observations
of ice concentration than of SST.

3.3 Initialisation with bias correction

The ratio of the reconstructed and the CryoSat-2 ice thickness shows remarkable sim-
ilarities of the three years (shown in Fig. 10 for March). We use this finding to derive
a bias correction procedure: First, we average the ratio fields over the three years
from 2012 to 2014 (shown in Fig. 11 for March and April). Second, we multiply the
CryoSat-2 ice thickness for March and April by the corresponding ratio fields yield-
ing bias-corrected Cryosat-2 ice thickness fields. Then we repeat the straightforward
initialisation (described in Sect. 3.1) with the bias corrected CryoSat-2 fields.

The convergence of the minimisation is similar to that of the straightforward initiali-
sation. The skill of the posterior concentration does, however, show a remarkable im-
provement until September (Fig. 12). The skill for SST is increased from March until
July, and for snow depth it is very close to the straightforward initialisation (not shown).
The misfit of the ice concentration in September is now strongly reduced for all years
(row 4 of Fig. 8).
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4 Conclusions

AWI’s ocean-sea ice model NAOSIM has been recalibrated using observations from
1990 to 2008. We restricted the calibration to parameters which control the sea ice
dynamics (but also the ocean dynamics) resulting in a horizontal ice thickness distribu-
tion much closer to the ICESat-JPL observations. A positive bias in the Beaufort Sea
and a negative bias over the Eurasian Basin slope were strongly reduced. This is con-
nected to a reduction of the ice drift speeds which are now much closer to the ice drift
provided by OSI SAF and KIMURA. The horizontal ice thickness distribution for single
events like the September 2007 sea ice minimum is also improved strongly. The time
series of September sea ice extent and area are now much closer to the observations.
While the standard version produces a minimum in extent and area in 1990 which al-
most reaches the 2007 values, the recalibrated model’s 1990 simulation is much more
realistic. This underlines the importance of a realistic horizontal ice thickness distri-
bution to simulate extreme events correctly. The model is now able to reproduce the
minima in 2007 and 2012 although the extent is somewhat overestimated. Also the
long-term trend from 1980 to 2014 in extent and area is captured much better.

Subsequent data assimilation experiments use the following four data streams:
CryoSat-2 sea ice thickness from AWI, sea ice concentration from OSI SAF, snow depth
from University Bremen, and sea surface temperature (SST) from OSI SAF. Three as-
similation experiments with these four data sets over an assimilation window covering
March and April, for each of the years 2012 to 2014, were carried out and a forecast
of the summer ice conditions was performed. To focus on the effect of constraining the
initial state of the sea ice—ocean system, we assumed to have perfect seasonal atmo-
spheric forecast providing perfect surface boundary conditions (for a use of this system
in operational mode, uncertainty in boundary conditions can be handled through an
ensemble approach). It turned out that the assimilation could only improve the summer
conditions for some regions. Arctic-wide the forecast in summer could not be improved
through the use of the sea ice and ocean observations in March and April.
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A second set of experiments was used to construct an initial state that is consistent
with the observational data sets except Cryosat-2 over a longer assimilation window
from March to September. From this initial state we simulated the posterior ice thick-
ness distribution in March and April. Since this set of experiments made use of the
summer ice conditions, we called the inferred posterior ice thickness fields “recon-
structed”. The ratio of this “reconstructed” and the CryoSat-2 ice thickness fields for
March and April is very similar for all three years. This allowed us to develop a bias cor-
rection scheme, which scales the CryoSat-2 ice thickness fields by the monthly three
year average of the above ratio. Then we performed a third set of assimilation exper-
iments for March and April similar to the first set of assimilations but used the above
bias correction scheme for the CryoSat-2 ice thickness. This procedure yields a con-
siderable improvement in forecast skill for sea ice from July to September for all three
years. We note that our prediction target, namely the summer ice conditions of 2012 to
2014, have entered the assimilation procedure, because they were used to derive the
ice thickness ratio in our bias correction scheme. However, the bias correction scheme
can now also be applied to years beyond the period from 2012 to 2014. One of these
applications is the Sea Ice Outlook 2015.
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Table 1. The costfunction for the three data streams separated by winter and summer (columns
2 to 7), the sum of the terms (column 8), and the normalized sum (column 9) for standard
NAOSIM (NAOSIM) and the recalibrated NAOSIM (newNAOSIM). Additionally, the costfunction
with respect to the ICESAT thickness and ice drift is given for PIOMAS2.1 and TOPAZ4.

Model concn. concn. ICESAT ICESAT drift drift total weighted
Nov—Apr May—Oct Feb/Mar Oct/Nov Oct-Apr May—Jul

NAOSIM 234429 430621 3550 3753 120959 126750 920063 3.00

newNAOSIM 405000 405221 1793 1664 22689 38131 963117 1.94

PIOMAS2.1 - - 1383 1125 46231 67254 - -

TOPAZ4 - - 2949 2276 159021 109079 - -
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Figure 2. The difference of the modelled and observed (ICESat-JPL) ice thickness climatology
[m] for February/March (left) and October/November for newNAOSIM (a, b), PIOMAS2.1 (c, d),
and TOPAZ4 (e, f) for the mean from 2003—2008. Only points where the deviation of ICESat-
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Figure 1. The empirical fit of the smearing uncertainty. Root mean squared difference be-
tween high resolution SIC aggregated to 10 km resolution (reference) and that computed at the
SSMI footprints using the Comiso Frequency mode (CF, green crosses) or the BRistol (BR, red

JPL from ICESAT-GSFC (Zwally et al., 2008) is below 40 cm are used.
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Figure 3. The sea ice thickness [m] September 2007 as simulated by (a) newNAOSIM, (b) PI-
OMAS 2.1, and (c) TOPAZ4.
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Figure 4. The September sea ice area of newNAOSIM (black) and three estimates based
on remotely sensed ice concentration (dashed). OSI SAF (re-processed) and SICCI based

on two different sensors (SMMR/SSMI and AMSR, available from http://icdc.zmaw.de/esa-cci

sea-ice-ecv0.html).
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Figure 6. The ice thickness [m] of the CryoSat-2 product (top row); ice thickness of new-
NAOSIM prior to the assimilation (second row), after the straightforward assimilation (third row),
and after the reconstruction (fourth row) for March 2012 (a, d, g, j), March 2013 (b, e, h, k),
and March 2014 (c, f, i, I).
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Figure 7. Prior and posterior misfit per data stream and month from (a) the CryoSat-2 ice
thickness (data are currently only available for March, April and November; not scaled, see
text), (b) the OSI SAF ice concentration, (c) the snow depth (UB), and (d) the OSI SAF SST.

5549

(k)

)

Jaded uoissnosiq

Jadeq uoissnosiq | J4aded uoissnasiq | Jeded uoissnosig

Figure 8. The misfit between simulated and OSI SAF ice concentration prior to (top row), af-
ter the straightforward assimilation (second row), after the reconstruction (third row), and after
the bias-corrected assimilation (fourth row) and the OSI SAF ice concentration for Septem-
ber 2012 (a, d, g, j), September 2013 (b, e, h, k), and September 2014 (c, f, i, I).
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Figure 9. As Fig. 7 but for the reconstruction experiment.

Figure 10. The ratio of the reconstructed and the CryoSat-2 ice thickness (a) March 2012,
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(b) March 2013, and (c) March September 2014.
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Figure 11. The mean ratio for (a) March and (b) April.
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Figure 12. As Fig. 7 but for the bias-corrected assimilation experiment. Only the misfit of the
ice concentration and SST are shown.
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