Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
doi:10.5194/tc-2017-12
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
09 Mar 2017
Review status
This discussion paper is under review for the journal The Cryosphere (TC).
Hydrologic Flowpath Development Varies by Aspect during Spring Snowmelt in Complex Subalpine Terrain
Ryan W. Webb1, Steven R. Fassnacht2, and Michael N. Gooseff1 1Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309, United States
2Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, United States
Abstract. In many mountainous regions around the world, snow and soil moisture are key components of the hydrologic cycle. Preferential flowpaths of snowmelt water through snow have been known to occur for years with few studies observing the effect on soil moisture. In this study, statistical analysis of the topographical and hydrological controls on the spatio-temporal variability of snow water equivalent and soil moisture during snowmelt was undertaken at a subalpine forested setting with north, south, and flat aspects as a seasonally persistent snowpack melts. We investigated if preferential flowpaths in snow can be observed and the effect on soil moisture through measurements of snow water equivalent and near surface soil moisture in addition to observing how SWE and near surface soil moisture vary on hillslopes relative to the toes of hillslopes and flat areas. We then compared snowmelt infiltration beyond the near surface soil between flat and sloping terrain during the entire snowmelt season using soil moisture sensor profiles. This study was conducted during varying snowmelt seasons representing above normal, relatively normal, and below normal snow seasons in northern Colorado. Evidence is presented of preferential meltwater flowpaths at the snow-soil interface on the north facing slope with the effects observed in changes in SWE and infiltration into the soil at 20 cm depth; less association is observed in the near surface soil moisture (top 7 cm). We present a conceptualization of the meltwater flowpaths that develop based on slope aspect and soil properties. The resulting flowpaths are shown to increase the snow water equivalent by as much as 170 % at the base of a north facing hillslope. Results from this study show that snow acts as an extension of the vadose zone during spring snowmelt and future hydrologic investigations will benefit from studying the snow and soil together.

Citation: Webb, R. W., Fassnacht, S. R., and Gooseff, M. N.: Hydrologic Flowpath Development Varies by Aspect during Spring Snowmelt in Complex Subalpine Terrain, The Cryosphere Discuss., doi:10.5194/tc-2017-12, in review, 2017.
Ryan W. Webb et al.
Ryan W. Webb et al.

Data sets

Snow density, snow depth, and soil moisture at Dry Lake study site in northern Colorado, 2013
R. W. Webb and S. R. Fassnacht
doi:10.1594/PANGAEA.864253
Snow density, snow depth, and soil moisture at Dry Lake study site in northern Colorado, 2014
R. W. Webb and S. R. Fassnacht
doi:10.1594/PANGAEA.864254
Snow density, snow depth, and soil moisture at Dry Lake study site in northern Colorado, 2015
R. W. Webb and S. R. Fassnacht
doi:10.1594/PANGAEA.864255
Ryan W. Webb et al.

Viewed

Total article views: 216 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
157 33 26 216 6 25

Views and downloads (calculated since 09 Mar 2017)

Cumulative views and downloads (calculated since 09 Mar 2017)

Viewed (geographical distribution)

Total article views: 216 (including HTML, PDF, and XML)

Thereof 215 with geography defined and 1 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 27 Apr 2017
Publications Copernicus
Download
Short summary
We Observed how snowmelt is transported to a stream through multiple measurements of snow and soil moisture across a small headwater catchment. We found that snowmelt flows through the snow with less infiltration on north facing slopes and infiltrates the ground on south facing slopes. This causes an increase in snow water equivalent at the base of the north facing slope by as much as 170 %. We present a conceptualization of flowpath development to improve future investigations.
We Observed how snowmelt is transported to a stream through multiple measurements of snow and...
Share