Dear Pr. Pattyn,

We are grateful to both reviewers for the second review of our manuscript. All of their remarks have been taken into account and changes have been made to clarify the text and improve the quality of the figures.

Best regards,

Helene Seroussi
1 Reviewer #1 (R. Gladstone)

It is good to see the additional figures and explanations. The authors have clearly made a good effort to respond to the reviewers comments. I think the reader can now have more confidence that these results are robust. However, I still must ask for a few minor changes.

The new figures are not completely convincing. In particular, fig 2 appears to be on a different scale to the other figures, and shows a rather strange shaped domain (is this really the model domain? Why the long thin blocky white region on the right extending up from the lower edge of the domain?). Most importantly, the reader needs a way to compare figs 2 and 6. I think a box in fig 2 indicating the sub-region shown in fig 6 would be the simplest way to do this.

Fig. 2 shows the mesh resolution for the whole basin while fig. 6 focuses on the grounding line area to better see the differences between the models. We added a white rectangle on fig. 2.

The figure text is in several instances too small, especially fig 5. What is the green line in fig 6b?

Larger text was used in fig. 5, 8 and 9. Green line on fig. 6b does not represent anything physical and was removed.

Is the fig 10 caption correct? Should beta = 1 be the black line, and Favier melt the red line?

\[\beta = 1 \] is the black line and Favier melt the red line. It has been corrected.

Page 9 line 18 “retreats” → “retreat”

Done

Page 11, lines 10-21. I simply dont agree with this. Youve shown that imposing a melt rate of 60m/a (high but not ridiculously high) in newly ungrounded regions has comparable effect in terms of contribution to sea level rise to doubling melt under the current ice shelf region. And yet you claim that imposing such a melt rate does not affect your results. You then say that Favier show the same thing, which is also not true. I guess you are talking about their m2 and m5 experiments. I agree, these are very similar for Elmer/Ice. But they are quite different for BISICLES (blue and red lines in their SLR plot). So I would argue that neither your study, nor Favier, present an unambiguous case for melting in newly ungrounded regions being unimportant.

We are not arguing that melting rate under newly ungrounded areas is unimportant and we think that only using coupled ice-ocean models will solve this
issue. The only purpose of the ungrounding melting experiments is to demonstrate that this limitation of our model does not impact the results. The text was clarified.

Lines 25-26. I agree with reviewer 2. Could you change “conservative” to “likely to be conservative”, thereby acknowledging the less likely but still plausible possibility of a reduction in melt?

Done

Page 12, line 14 “this parameter controls most of the dynamics” please modify wording. You are saying that melt is the most important of the climatic forcing factors you have considered. But you haven’t considered rheology or basal processes. With this in mind, the current wording is a bit too general.

Done

Lines 18-19 repetition of “qualitative”; I suggest removing the first one.

Done

Line 21 “not exactly the same time period” can you be more specific and say that glacier response lags increased melting?

Done

2 Reviewer #2 (G. Durand)

Seroussi et al. explore the sensitivity of the Pine Island Glacier (PIG) to various climate forcings (change in surface mass balance, calving front position and sub ice shelf melting) using the Ice Sheet System Model (ISSM). They demonstrate the importance of sub ice shelf melting and that a better description of this boundary condition is required to improve the reliability of sea-level rise projections. This work is well described, with relevant results and authors fairly answered to previous reviewers comments. This clearly deserves publication. I however have one regret and one suggestion.

ISSM, grounding line dynamics and MISMIP3d Authors answer to one comment from the second reviewer that ISSM has been validated against MISMIP3d. Then, one could question why it is not mentioned in the paper? Actually, only the Shallow Shelf Approximation (SSA) implemented within ISSM has been evaluated so far against the MISMIP3d setup (and results were in conflict with other SSA models owing to parametrization of grounding line position, see Seroussi et al. 2014). The present study is made using the Blatter-Pattyn (BP) approximation. To that respect, the model used in this work has not been evaluated against MISMIP3d. This therefore justifies to not refer to the MISMIP3d
benchmark in the present work. Authors stressed in the past that solving higher-order approximations of the Stokes equations is important for proper modeling of the PIG flow (Morlighem et al., 2010). Consequently, they use PB in the present work. I regret to not see their BP model evaluated against MISMIP3d. I personally believe that any marine ice sheet model producing mass balance projections of actual glaciers should be first evaluated against MISMIP3d. This is not always the case (e.g. Joughin et al. 2014) and not here as well. It has to be noted that the authors made significant efforts to show that their results are not affected by mesh resolution (annex). I let at the appreciation of the editor whether further validations are required or not. To my opinion, validation against MISMIP3d would be a valuable annex to this paper or maybe a part of the Seroussi et al. 2014 (currently under revision in TCD). This would give more confidence in the result obtained in the present study and any further similar work the authors could produce. But I would understand that it is out of the scope of that paper.

We agree that the MISMIP3d has only been tested for the SSA model and we are considering adding a couple runs in [Seroussi et al., submitted] to validate the HO model. However the model has been tested with a mesh resolution divided by two and the results were similar, demonstrating that our results are robust with mesh resolution.

Modeled grounding line retreat in disagreement with current observations? Authors shows the evolution of their modeled grounding line in Figure 6. Modeled grounding line retreat seems in contradiction with current observations (Rignot et al., 2014): the model is not retreating in the main trunk (observations shows that it does) but exhibits large retreat in the eastern part of the ice shelf (not observed). I believe this should be clearly stated in the present work and some related caveats should be formulated when discussing the coming evolution of the PIG deduced from their simulations. May this contraction with observations come from an inappropriate description of the grounding line dynamics (and evaluation against MISMIP3d may help to exclude this hypothesis)? I am more inclined to believe that it is mainly due to the melt rate distribution applied, here imposed from MIT GCM outputs. Then, concluding coupling of the ice sheet with ocean circulation models is therefore desired for future studies to conduct more accurate simulations seems a bit overstated to me. Authors rather show that imposed melt rate is a very sensitive parameter for a marine ice sheet model and that the melt distribution currently computed from the MIT GCM does not allow to properly reproduce some observed critical changes using this particular ice sheet model. I would suggest to reformulate related sentences.

We agree that melting rate distribution largely affects the grounding line retreat and that the quality of melting rate patterns is difficult to evaluate, as there are very few direct observations. However our simulations start in a configuration close to the 2008 conditions so there are not many observations
of grounding line retreat since this date. Results from Rignot et al. [2014] only show the grounding line positions in the 1990’s, 2000 and 2011 and there is not much difference between the 2009 [Joughin et al., 2010] and 2011 positions. Furthermore, recent results, also in Rignot et al. [2014], show that the ice thickness of Pine Island glacier has probably been underestimated by several hundreds of meters in the area upstream of the grounding line on the main trunk. This would facilitate the grounding line retreat in this area but evaluating the impact of ice thickness on grounding line retreat is beyond the scope of this manuscript.

Minor comment I would suggest to use the same vertical axes in panel a, c, e and b, d, f of Figure 5. Comparison between panels would be easier.

Done

References
References

Sensitivity of the dynamics of Pine Island Glacier, West Antarctica to climate forcing for the next 50 years

H. Seroussi1, M. Morlighem2, E. Rignot2,1, J. Mouginot2, E. Larour1, M. Schodlok1,3, and A. Khazendar1

1Jet Propulsion Laboratory - California Institute of Technology, 4800 Oak Grove Drive MS 300-323, Pasadena, CA 91109-8099, USA
2University of California, Irvine, Department of Earth System Science, Croul Hall, Irvine, CA 92697-3100, USA
3Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA 90095, USA.

Correspondence to: Helene Seroussi (Helene.Seroussi@jpl.nasa.gov)
©2014 - All rights reserved
Abstract

Pine Island Glacier, a major contributor to sea level rise in West Antarctica, has been undergoing significant changes over the last few decades. Here, we employ a three-dimensional, higher-order model to simulate its evolution over the next fifty years in response to changes in its surface mass balance, the position of its calving front and ocean-induced ice shelf melting. Simulations show that the largest climatic impact on ice dynamics is the rate of ice shelf melting, which rapidly affects the glacier speed over several hundreds of kilometers upstream of the grounding line. Our simulations show that the speedup observed in the 1990s and 2000s is consistent with an increase in sub-ice-shelf melting. According to our modeling results, even if the grounding line stabilizes for a few decades, we find that the glacier reaction can continue for several decades longer. Furthermore, Pine Island Glacier will continue to change rapidly over the coming decades and remain a major contributor to sea level rise, even if ocean-induced melting is reduced.

1 Introduction

Pine Island Glacier is one of the most active glaciers in Antarctica, with an ice discharge of more than 130 Gt/yr in 2013 (Mouginot et al., 2014; Medley et al., 2014). It has experienced dramatic changes over the past decades: its velocity has increased by more than 40% between 1996 and 2007 and its grounding line has been retreating at a rate of about 1 km/yr between 1992 and 2011, which resulted in the progressive ungrounding of its ice plain (Corr et al., 2001; Mouginot et al., 2014; Rignot et al., 2014). Satellite observations reveal an average rate of mass loss multiplied by 4 between 1995 and 2006 on the main trunk (Wingham et al., 2009). The changes in ice dynamics have been attributed to the presence of warm, subsurface water in the ocean (Rignot, 1998; Payne et al., 2004), which was observed for the first time in the 1990s (Jacobs et al., 1996). The recent increase in speed was attributed to the intrusion of warm water through a widening gap in the ice shelf cavity resulting from ice shelf thinning (Jacobs et al., 2011). It was however noted that since 2009 the glacier speed at the grounding line has reached a steady
value (Mouginot et al., 2014), which has been suggested to indicate a temporary stabilization of the glacier grounding line based on a two-dimensional model simulation (Joughin et al., 2010). Earlier simulations with a two-dimensional model indicated a 10% increase in velocity from a 13% reduction in ice shelf extent, and a 70% speed up from the collapse of the entire ice shelf (Schmeltz et al., 2002). Thomas et al. (2004b) studied the impact of grounding line migration using a flow line (1-dimensional) model. They found that the grounding line retreat of Pine Island Glacier reduced the buttressing force on the grounded part of the glacier and had a stronger effect on glacier flow than changes in ice shelf extent or thickness. They showed that grounding line perturbations were transmitted almost instantaneously over long distances inland. Their model correctly predicted that the entire ice plain would unground in the following years if ice thinning rates remain unchanged and that the ice shelf would reach a flow speed of 4 km/yr. Using a 2D/3D mixed model, Payne et al. (2004) showed that the increase in ice shelf melting would reduce basal friction at the grounding line and changes would be transmitted upstream, more than 200 km inland, on a decadal timescale, by a diffusive process. More recently, Joughin et al. (2010) used a 2D planview model with constrained grounding line dynamics and ice shelf margins to conclude that the grounding line retreat will be reduced for several decades and the mass loss should remain steady. Using a volume continuity model, however, Thomas et al. (2011) found that grounding line retreat will be maintained and yield glacier speeds in excess of 10 km/yr within a few decades. Williams et al. (2012) concluded from a model study that high frequency forcings (decadal to sub-decadal) are transmitted by membrane stress and not by driving stress, and propagate rapidly several tens of kilometers inland. Favier et al. (2014) used a three-dimensional (3D) Full-Stokes (FS) model and parameterization of the ocean-induced melting rate to study the grounding line retreat of Pine Island Glacier. They showed that the grounding line of Pine Island Glacier is likely to have started an irreversible retreat on the downward sloping bed of the main trunk and that its contribution to sea level rise could reach 100 Gt/yr in the next 20 years.

Here, we use a 3D model that includes grounding line dynamics, data assimilation for basal friction and a high-resolution mesh to analyze the impact of external forcings on the ice flow dynamics of Pine Island Glacier. These external forcings are: (1) surface mass balance (SMB),
(2) calving front position and (3) ice-shelf melting. We discuss the impact of each external forcing on ice dynamics, i.e., on the velocity pattern over the entire basin. We compare our results with observations and conclude on the possible evolution of the glacier over the next 50 years.

2 Data and Methods

We initialize our numerical model to match satellite observations centered around 2008. The surface elevation is a combination of satellite radar and laser altimetry from ICESat and ERS-1 (Bamber et al., 2009). The bed topography is from ALBMAP (Le Brocq et al., 2010), derived from ground-penetrating radar measurements (Lythe and Vaughan, 2001). Ice shelf thickness is retrieved from satellite radar altimetry from ERS-1 (Griggs and Bamber, 2011) and the seafloor bathymetry under the floating part of Pine Island Glacier is from NASA’s Operation IceBridge (OIB) gravimetry (Studinger et al., 2012). We employ surface temperature and SMB forcings (ice accumulation) from the regional atmospheric model RACMO2 (Lenaerts et al., 2012) and the geothermal heat flux is inferred from satellite magnetic data (Maule et al., 2005). The model domain corresponds to the extent of Pine Island Glacier catchment basin, which is constrained by topography and velocity data. The grounding line position corresponds to the 2007 grounding line position derived from differential satellite synthetic-aperture radar interferometry (DInSAR) from ERS-1 and 2, RADARSAT-1 and 2 and ALOS PALSAR (Rignot et al., 2011b, 2014). We rely on melting rates reconstructions from the MITgcm using the OIB bathymetry (Schodlok et al., 2012). The melting rate is an average over a year and is kept constant throughout the simulation, so no additional melting is introduced if ice starts floating. Fig. 3 shows the basal melt rate distribution under the floating ice of Pine Island Glacier as well as its distribution with depth. As bathymetric and bed data remain sparse and do not match at the grounding line, we lower the bathymetry in the first 10 km downstream of the grounding line so that hydrostatic equilibrium is consistent with the grounding line position. The correction applied to the bathymetry lowers its elevation up to 100 m over a spatially limited area. It restrains grounding line advance, which is consistent with recent observations (Rignot et al., 2011a).
We use the Ice Sheet System Model (ISSM) to perform our numerical experiments (Larour et al., 2012). A 3D higher-order approximation (Blatter, 1995) of the full-Stokes equations is applied to a 225,000 element mesh. The mesh horizontal resolution varies from 500 m near the grounding line to 10 km in the mountainous regions (see Fig. 2) and is vertically extruded in 14 non-uniform layers (thinner layers at the base). To initialize the model, the coefficient of basal friction is inferred using assimilation of InSAR derived surface velocity data of 2008 (Rignot et al., 2011a; Mouginot et al., 2012) on grounded ice, as described in Morlighem et al. (2010) (Fig.1a). Basal friction is assumed to follow a linear viscous law. Ice rigidity is based on the values provided in (Cuffey and Paterson, 2010) assuming thermal steady-state on grounded ice and is inferred using data assimilation of surface velocity on floating ice. Ice temperature and hardness are updated at each step during data assimilation of basal friction for consistency (Morlighem et al., 2010). No additional tuning, such as melting rate correction or ad-hoc time dependent friction coefficient, is applied.

The data used to initialize the model are acquired on different years, with different instruments and at resolutions that range from 300 m for observed surface velocities (Rignot et al., 2011a) to several kilometers for bedrock topography (Le Brocq et al., 2010). These data are not always consistent and lead to large ice flux divergence anomalies in ice flow simulations (Seroussi et al., 2011). We therefore relax the model for 10 years with a fixed grounding line and using present-day forcings in order to reduce the spurious oscillations in ice thickness that exhibit large anomalies in the first years caused by the uncontrolled interpolation of ice thickness data on regular grids. An alternative would be to use mass continuity to improve the bedrock topography of the grounded part of Pine Island Glacier (Morlighem et al., 2011, 2013) but is beyond the scope of this study.

Simulations are run forward for 50 years with time steps of three weeks to satisfy the CFL condition (Courant et al., 1967). At each time step, the ice velocity, topography and grounding line position are updated. We use a floatation criterion for grounding line retreat: ice starts floating if it becomes thinner than the floatation thickness. Ice temperature is kept constant during the simulation and ice thickness change is computed with a mass transport equation, stabilized with the streamline upwinding finite-element method.
We investigate the influence of external forcings through three model parameters. In the first set of experiments, we multiply the SMB (accumulation of ice) by a coefficient α varying between 0 and 3. In a second set of experiments, we simulate the retreat of the ice front position from 0 to 40 km (Fig.1b); this is twice the distance between the 2011 ice front and the position of the current rift that calved in November 2013 (Howat et al., 2012). In a final experiment, we multiply the ocean induced melting rate pattern from the MITgcm by a coefficient β that varies between 1 and 2. A study by Jacobs et al. (2011) estimated that the ocean induced melt water under Pine Island ice shelf between 1994 and 2009 increase by 50%, so our multiplication factor is twice the observed increase rate over this period. In the SMB experiments, we chose a range of α such that the volume change is larger than the melting experiments. SMB, front position and melting rates are then kept constant during all the simulations. These experiments simulate changes that are twice as large as what have been recently observed.

3 Results

Model initialization is in good agreement with observations, with an average velocity difference of about 13 m/yr between modeled (Fig.1a) and observed velocities from 2008. During the 10 years of relaxation, the ice thickness mainly adjusts on the floating part of the glacier, with about 100 m of thickening downstream of the grounding line along the main trunk and thinning up to 150 m on the rest of the floating ice. Changes on grounded ice are more local and of smaller amplitude (Fig. 4a). Velocity is also mainly changing over the floating part of the glacier, with a speed up of 300 m/yr along the shear margins and slowdown of about 150 m/yr at the grounding line of the main trunk (Fig. 4b). A small acceleration of the main trunk and the main tributaries is also observed.

The glacier evolution during the 50 years of the simulation under present day conditions shows an increase in velocity over the ice shelf, from 3.7 km/yr in its initial state to 4.5 km/yr after 50 years of evolution. This change in speed propagates several hundreds of kilometers inland: the model shows an increase in speed of 200 m/yr, or 20%, 100 km upstream of the grounding line, in areas where initial speed is 1.0 km/yr. Changes in flow speed are detected all
the way to the flanks of the glacier topographic divides; most of the glacier speeds up by 20%. Ice thinning is equivalent to a total of 11 mm of sea level rise after 50 years, or 78 Gt/yr.

The first sensitivity experiments (Fig.5a) show that changes in SMB do not affect the ice dynamics over 50-year simulations: ice speed changes by less that 0.1% when SMB is multiplied by a factor 3 compared to current values. Changes in SMB, however, lead to variations in glacier volume above floatation (Fig.5b) equivalent to a sea level variation between -7 mm and +20 mm over 50 years. The volume above floatation remains constant when SMB is doubled. Time series of volume change are quasi linear because changes in volume above floatation do not involve any change in ice dynamics.

Changes in ice front position have an immediate effect on ice velocity (Fig.5c), and make the ice front velocity vary from 3.7 to 5.4 km/yr. After 50 years, the ice front velocities stabilize at the same speed, except in the case of very large retreats (> 25 km, with more than half of the ice shelf being removed). Hence, changes in ice front position have only a moderate impact on long-term glacier speed. Changes in ice front position, however, do not impact the volume above floatation of the glacier (Fig.5d). The rate of volume change is similar for all front retreat except for the most extreme retreat as all experiments lead to a similar discharge after 50 years as noted above. The perturbations introduced here do not destabilize the glacier and do not affect its dynamic on the long except when very large ice front retreats are introduced, as areas of the ice shelf actively buttressing the ice stream are removed in this case.

Sensitivity to basal melting under floating ice is shown in Fig.5e,f. A doubling of the basal melting rate leads to a velocity increased of 800 m/yr on the floating part of the glacier (Fig.5e). Acceleration is not limited to the floating part but propagates hundreds of kilometers inland in 1 to 5 years. Increased melting also leads to a decrease in ice volume above floatation (Fig.5f). The time series of volume above floatation show an increased contribution with time as the glacier is accelerating in response to changes in basal melting rate. Multiplying the basal melting by a factor of two leads to an additional ice volume loss of 4 mm of sea level equivalent.

Fig.7a-c and g show the pattern of velocity change in the first 15 years of simulation in the case of a basal melting rate increase by 50%. The acceleration has the same pattern as the velocity and is not limited to the main trunk of Pine Island Glacier but affects almost its entire
drainage system: a velocity increase of more than 200 m/yr in the first 15 years affects all tributaries flowing above 500 m/yr.

In all the above scenarios, variations in the grounding line position are small and grounding line positions remain in areas with a fine mesh resolution. Fig. 6a shows the grounding line position at the beginning of the simulations and at the end of the melting scenarios for $\beta = 1$ and $\beta = 2$. The grounding line retreats by no more than 10 km during the 50-year simulations and is very limited over the main trunk. Using a finer mesh resolution did not change the results, proving that grounding line retreat is not limited by a too coarse mesh resolution (see appendix and fig. 6b) but by the glacier topography and basal melting rate values applied here. This retreat is consistent with Joughin et al. (2010) and follows one of the two retreat modes modeled in the ensemble runs of Gladstone et al. (2012). The other mode of retreat being grounding line retreat of several hundreds of kilometers per century. This mode is consistent with control run and m1 scenarios of Favier et al. (2014), but does not agree with the other scenarios: none of our simulations show that the grounding line is unstable. This is explained by the difference between the basal melting rates that we are applying (based on high-resolution MITgcm simulations), which are significantly lower than the ones used in Favier et al. (2014).

4 Discussion

Changes in both SMB and basal melting affect Pine Island Glacier’s volume, but basal melting under floating ice is the only modeled forcing that affects the glacier’s dynamics on the timescales under study here. Increased basal melting causes thinning of floating ice that leads both to a reduction in buttressing from the ice shelf and a grounding line retreat. Experiments focusing on ice front retreat also confirm that limited ice front retreat over an unconfined part of the ice shelf, due to calving events for example, have no long-term effect on the glacier’s dynamics.

In their study of Pine Island Glacier, Favier et al. (2014) show that the grounding line of Pine Island Glacier is engaged on an unstable 40 km retreat and that the glacier is controlled by marine ice sheet instability. Their results also show that limited ice front retreats do not affect
grounding line dynamics while changes in basal melting rates under floating ice strongly impact grounding line motion. In their control experiment, the basal melting is parameterized to match certain recent observations (Dutrieux et al., 2013). A small reduction in grounded ice area is observed in this case, which is similar to the results reported here. Their simulations show that if basal melting increases and extends to a larger portion of the ice shelf, the grounding line starts an unstable retreat along the 40 km retrograde slope. In our simulations, even in the case of doubled melting rate, the grounding line position does not retreat more than 10 km. This is probably caused by the different patterns of melting rates: basal melting rates in Favier et al. (2014) are as high as 100 m/yr over large areas, while only a few points have melting rates above 50 m/yr in our study. In an additional experiment, we use a similar parameterization of basal melting rates as the ones used in Favier et al. (2014) (no melting the for ice shelf base above -200 m, melting linearly increasing with depth until it reaches 200 m/yr at -800 m and equal to 200 m/yr for elevations lower than -800 m). The grounding line retreats over 30 km upstream, which is similar to the results of Favier et al. (2014) (fig. 10)). This confirms that the applied basal melting rate is critical for simulations of ice stream dynamics and grounding line retreat.

Our simulations reveal that even if increased basal melting causes limited grounding line retreat, it reduces the buttressing from the ice shelf as the ice is thinning, which leads to a speed up of Pine Island Glacier. A change in basal melting not only affects ice velocity in the floating part of the glacier: acceleration propagates inland, and reaches the flanks of the ice divide, as predicted by Williams et al. (2012) for decadal forcings. Our simulated accelerations are difficult to compare with previous results as acceleration is rarely provided. However, they propagate further inland than in most prior studies; we obtain a velocity increase of about 100 m/yr up to 200 km upstream of the grounding line, through a combination of transmission of membrane stress and driving stress or diffusive processes. In previous studies, a similar speed up is confined to the first 70 km upstream of the grounding line in Payne et al. (2004) and to the first 120 km in Thomas et al. (2004a). In Joughin et al. (2010), the thinning rate propagates inland and reaches 1 m/yr 100 km upstream of the grounding line after a decade.

Comparison of the first 15 years of simulation with satellite observations of previous acceler-
ation of Pine Island Glacier in the 1990s and 2000s (Mouginot et al., 2014) (Fig.7d-f) provides qualitative estimates as model and observations are from different years. It shows that the patterns of modeled acceleration due to enhanced sub-ice-shelf melting ($\alpha = 1.5$) are in agreement with the observed glacier acceleration, with similar patterns after 10 and 15 years. Modeled velocities differ from observations along the side margins of the ice shelf: in this region, ice accelerates more in the model than in the observations (1000 m/yr in the first ten years of simulation vs 800 m/yr between the 1996 and 2006 observations). Our simulation shows an acceleration of the main trunk and most of its tributaries (Fig.7b,e) similar to previous changes observed in the past decades. Acceleration in the area just upstream of the grounding line is smaller in our simulations than in the observations (700 m/yr on average in the ice plain after 15 years of simulations vs 900 m/yr in the observations, fig.7g), suggesting that our results underestimate the actual speed up of Pine Island Glacier. This acceleration is difficult to compare to that inferred in prior studies, which mainly focused on the glacier centerline.

In an additional experiment (fig. 8a) we increase sub-ice-shelf melting for a limited time. In this simulation, basal melting from the MITgcm is multiplied by 1.5 for the first five or fifteen years and then switched back to its initial value. The ice shelf velocity increases and reaches ~ 4.9 km/yr in both cases after 50 years compared with 5.0 km/yr when increased basal melting (also multiplied by 1.5) is kept constant over the entire 50 year simulation. In the control run where basal melting from MITgcm is directly used, the ice shelf velocity after 50 years is 4.5 km/yr. This indicates that a temporary increase in basal melting rates has a long-term impact on ice dynamics and that Pine Island Glacier will not slow down and stabilize even if ocean conditions were to return to what they were a few decades ago. This conclusion is consistent with the marine instability hypothesis that states that glaciers on downward sloping bed inland are intrinsically unstable (Weertman, 1974; Schoof, 2007) and with recent studies of Pine Island Glacier (Favier et al., 2014). Change in glacier volume above floatation after 50 years is almost identical if basal melting rate is increased for 5 or 15 years (fig.8b) and about 0.4 mm of sea level equivalent lower than if increased melting is kept constant for 50 years.

Our study provides estimates of climate sensitivity of Pine Island Glacier based on a 3D higher-order formulation, with a high resolution in the grounding line area. No melting rate
or surface accumulation correction is introduced to start with a model in steady-state condition (Joughin et al., 2010; Cornford et al., 2013), and no additional parameterization is needed to include buttressing, reduction of basal friction, contrary to most of the studies performed with flowband models. We have shown in another study that errors in ice rigidity and basal friction do not affect the results significantly for these short-term simulations (Seroussi et al., 2013).

Our model has however some limitations, such as a fixed ice front that can only be changed manually, no rheological weakening of the floating ice and a grounding line that is not based on contact mechanics, which would be too computationally intensive for this kind of sensitivity experiments.

In all our simulations, the pattern of basal melting is kept constant with time. Additional experiments have been performed to show that introducing moderate melting rates under ungrounding ice does not significantly affect our results. Fig. 9 shows the ice velocity and ice volume above floatation if we apply in the areas that unground either the average basal melting rate under floating ice or the highest value of melting rate. Results show that applying the average basal melting rate value has a small impact on the simulations while extreme melting leads to variations comparable to a doubling of the basal melting rate over the floating area. This result is not surprising, as the grounding line retreat remains limited in all our experiments; however the results could be different in the case of a large grounding line retreat. This is also confirmed by comparable to results of Favier et al. (2014) based on Elmer/Ice; they run two experiments with similar basal melting parameterization. In the first one, basal melting is turned on as grounded ice starts floating, while in the second one, basal melting is limited to the initial floating part of the glacier. Results of these two experiments are very similar in terms of both grounded area and sea level rise, confirming our results.

Melting rates are kept constant throughout the simulations, while we know that changes in ice shelf cavity will affect their amplitude and spatial distribution (Schodlok et al., 2012). We choose not to change the pattern of basal melting, as we do not know how changes in ice shelf cavity will impact oceanic circulation and basal melting rates, and our results are therefore likely to be conservative estimates of changes. Melting rate parameterizations (Pollard and DeConto, 2009; Little et al., 2009) provide a first estimate but do not include specifics for each glacier.
Results from the MITgcm highlight that no simple parameterization of basal melting rate based on ice shelf depth for example can be derived (fig. 3). Recent observations in the bay adjacent to Pine Island glacier also report the large temporal variability of ocean heat and oceanic induced melting in this area (Dutrieux et al., 2014). Our results show that precise estimates of basal melting under floating ice are required and essential for constraining the evolution of glacier dynamics, as a modest increase of 10% in basal melting rates impacts ice sheet dynamics. To achieve this goal, however, progress is necessary in the modeling of ice-ocean interactions beneath the ice shelves with coupled ice-sheet/ocean/atmosphere models (Schodlok et al., 2012).

Finally, our simulations suggest that the acceleration of Pine Island Glacier will continue to propagate inland and its mass loss will continue for decades to come, even if the oceanic conditions return to their state prior to the 1990s and the grounding line position remains stable for a few decades. Similarly, if more ocean heat reaches the grounding line area, the mass loss will continue to increase for decades to come, with no sign of stabilization.

5 Conclusions

Our study shows that Pine Island Glacier is highly sensitive to basal melting under its floating extension; this parameter is the most important climate factor tested in our simulations and controls most of the dynamics of this glacier, even if grounding line retreat remains limited. The effect of changes in sub-ice-shelf melting are not limited to the floating tongue and grounding line area but are rapidly transmitted hundreds of kilometers inland. Increase in sub-ice-shelf melting for only five years destabilizes the glacier for several decades and has a long-term impact on its dynamics. A qualitative comparison of our model results with satellite observations of the 1990s and 2000s shows the good qualitative agreement between modeled and observed accelerations and suggests that the glacier speed-up is consistent with increased basal melting under the ice shelf, although not exactly from the same time period simulations and observations are separated by a decade. Coupling of the ice sheet with ocean circulation models is therefore desired for future studies to conduct more accurate simulations, as the glacier is controlled by ocean induced melting rates. Overall, Pine Island Glacier is likely to keep accelerating over the
coming decades, even if ocean circulation and melting remain unchanged and the grounding line temporarily stabilizes over a local feature in the bedrock topography.

Appendix A Sensitivity to mesh resolution

To show that our results are not sensitive to the mesh resolution and that the grounding line retreat is not affected by the size of the elements, we performed two experiments with a mesh resolution divided by two (a resolution of 250 m in the grounding line area): the control experiment with the initial basal melting under floating ice from the ocean model ($\beta = 1$) and the extreme melt experiment with a basal melting multiplied by $\beta = 2$.

The grounding line positions at the beginning and the end of the simulations are shown on fig. 6b. The results are in excellent agreement with the initial mesh that has a resolution of 500 m in the grounding line area (fig. 6a), demonstrating that the mesh resolution is not a limiting factor for the grounding line retreat in our experiments.

Acknowledgements. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and at the University of California, Irvine, under a contract with the National Aeronautics and Space Administration. HS is supported by appointments to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. Additional funding provided by the JPL Research, Technology and Development program and NASA Cryospheric Science (AK), Modeling, Analysis and Prediction and Interdisciplinary Science programs. We thank R. Gladstone and G. Durand for their helpful and insightful comments.
Fig. 1. (a) Initial modeled 2008 velocity of Pine Island Glacier, overlain on a MODIS Mosaic of Antarctica with initial grounding line (white) and centerline (black). (b) Ice front positions used in the sensitivity study.
Fig. 2. Mesh resolution (in m) used in the simulations; the white box shows the region represented in fig. 6 and 10.
Fig. 3. (a) Basal melting rate (in m/yr) from the MITgcm filled with constants values (50 m/yr) over areas not covered by the MITgcm. (b) Basal melting rate values (in m/yr) from the MITgcm represented as a function of ice shelf base depth.

Fig. 4. (a) Thickness change (in m) and (b) velocity change (in m/yr) during the 10-year relaxation period overlain on a MODIS Mosaic of Antarctica. Black line represents the grounding line.
Fig. 5. Modeled velocity sensitivity (left column) and volume above floatation sensitivity (right column) to (a-b) surface mass balance; (c-d) ice front position and (e-f) ice shelf melting. Solid lines on the left column represent the ice velocity at the end of the simulation and dashed line the initial velocity after ice front retreat when ice front position is changed.
Fig. 6. Grounding line position at the beginning of the experiments (blue line), and at the end of the melting experiments in the case of $\beta = 1$ (red line) and $\beta = 2$ (black line) overlain on the bedrock elevation. The mesh resolution is 500 m (a) and 250 m (b) in the grounding line area.
Fig. 7. Changes in observed and modeled velocities in m/yr on a logarithmic scale. (a) Modeled Year 11 - Year 1, (b) Modeled Year 15 - Year 1, (c) Modeled Year 15 - Year 11, (d), Observed 2006 - 1996, (e) Observed 2010 - 1996, (f) Observed 2011 - 2006. Modeled velocities are from the increased basal melting experiment (melting multiplied by 1.5).
Fig. 8. Modeled velocity sensitivity (a) and volume above floatation sensitivity (b) to increased ice shelf melting over a limited time. Ice shelf melting is multiplied by 1.5 during the first 0 (red), 5 (yellow), 15 (green) and 50 (blue) years of the simulation.
Fig. 9. Modeled velocity sensitivity (a) and volume above floatation sensitivity (b) to ice shelf melting applied over newly ungrounded areas.
Fig. 10. Grounding line position at the beginning of the experiments (blue line), and at the end of the melting experiments in the case of $\beta = 1$ (red–black line) and for a basal melting rate parameterization based on the ice shelf base elevation similar to Favier et al. (2014) (red line), overlain on the bedrock elevation.
References

Seroussi, H., Morlighem, M., Rignot, E., Khazendar, A., Larour, E., and Mouginot, J.: Dependence of
century-scale projections of the Greenland ice sheet on its thermal regime, J. Glaciol., 59, 1024–1034,

Studinger, M., Allen, C., Blake, W., Shi, L., Elieff, S., Krabill, W. B., Sonntag, J. G., Martin, S., Dutrieux,
P., Jenkins, A., and Bell, R. E.: Mapping Pine Island Glaciers sub-ice cavity with airborne gravimetry,
in: AGU Fall Meeting 2010, 1317 December 2010, San Francisco, CA. American Geophysical Union,

Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuna, C., Akins, T., Brecher, H., Frederick,
E., Gogineni, P., Krabill, W., Manizade, S., Ramamoorthy, H., Rivera, A., Russell, R., Sonntag, J.,
Swift, R., Yungel, J., and Zwally, J.: Accelerated sea-level rise from West Antarctica, Science, 306,

Thomas, R., Rignot, E., Kanagaratnam, P., Krabill, W., and Casassa, G.: Force-perturbation analysis of
Pine Island Glacier, Antarctica, suggests cause for recent acceleration, Ann. Glaciol., 39, 133–138,
2004b.

Thomas, R., Frederick, E., Li, J., Krabill, W., Manizade, S., Paden, J., Sonntag, J., Swift, R., and Yungel,
J.: Accelerating ice loss from the fastest Greenland and Antarctic glaciers, Geophys. Res. Lett., 38,
L10502, 1–6, 2011.

