Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW-Svalbard, from SAR offset tracking

T. Schellenberger¹, T. Dunse¹, A. Kääb¹, J. Kohler², C. H. Reijmer³

¹ Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway
² Norwegian Polar Institute, Fram Centre, Tromsø, Norway
³ Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands

Correspondence to: T. Schellenberger (thomas.schellenberger@geo.uio.no)

Abstract

Kronebreen and Kongsbreen are among the fastest flowing glaciers on Svalbard, and therefore important contributors to the total dynamic mass loss from the archipelago. Here, we present a time series of area-wide surface velocity fields from April 2012 to December 2013 based on offset tracking on repeat high-resolution Radarsat-2 Ultrafine data. Surface speeds reached up to 3.2 m d⁻¹ near the calving front of Kronebreen in summer 2013 and 2.7 m d⁻¹ at Kongsbreen in late autumn 2012. Additional velocity fields from Radarsat-1, Radarsat-2 and TerraSAR-X data since December 2007 together with continuous GPS measurements on Kronebreen since September 2008 revealed complex patterns in seasonal and interannual speed evolution. Part of the ice-flow variations seem closely linked to the amount and timing of surface melt water production and rainfall, both of which are known to have a strong influence on the basal water pressure and hence basal lubrication. In addition, terminus retreat and the associated reduction in backstress appear to have influenced the speed close to the calving front, especially at Kongsbreen in 2012 and 2013. Since 2007, Kongsbreen retreated up to 1800 m, corresponding to a total area loss of 2.5 km². In 2011 the retreat of Kronebreen of up to 850 m, responsible for a total area loss of 2.8 km², was triggered after a phase of stable terminus position since ~1990. Retreat is an important component of the mass balance of both glaciers, in which frontal ablation is the largest component. Total frontal ablation between April 2012 and December 2013 was estimated to 0.21 - 0.25 Gt a⁻¹ for Kronebreen and 0.14 - 0.16 Gt a⁻¹ for Kongsbreen.
1 Introduction

Extended mass loss made glaciers the most important cryospheric contributors to global eustatic sea-level rise in the 20th century and projections from surface mass balance models estimate additional loss of glaciers outside Antarctica of 0.07 to 0.26 m sea-level equivalent by 2100 (Church et al., 2013). These estimates do not yet include dynamic glacier wastage, which is poorly constrained, but might play an important role over the course of the next centuries (Church et al., 2013).

Glacier velocity v depends amongst others on basal drag (Clarke, 1987), which itself is a function of temperature at the glacier bed and basal water pressure. When temperature at the bed is below the pressure melting point, the glacier is frozen to the ground and only deforms at a rate of a few meters to tens of meters per year. When the glacier bed is temperate, as is the case for the lower parts of Kronebreen and Kongsbreen studied here, fast basal motion may occur, and speed is then mainly constrained by basal water pressure and driving stress.

The total mass balance of tidewater glaciers such as Kronebreen and Kongsbreen comprises two components, the climatic-basal balance (B) and the frontal ablation A_f (Cogley et al., 2011). Three individual processes cause frontal ablation, namely iceberg calving D, subaerial frontal melting and sublimation $A_{f\text{air}}$, and subaqueous melt $A_{f\text{wtr}}$. The importance of frontal melt was first highlighted on LeConte glacier in Alaska by Motyka et al. (2003), where melt was estimated to be 57% of the total ice loss at the glacier front. Subaqueous melt has also been widely studied in Greenland (e.g. Holland et al., 2008) and for the Antarctic ice shelves (e.g. Pritchard et al. 2012), but little information exists on the importance of frontal melt for Svalbard glaciers so far (Vieli et al., 2002). Iceberg calving, the second process, is primarily controlled by stretching of the ice body due to speed gradients and subsequent opening and propagation of crevasses (first order process, Benn et al., 2007). Second order processes include instability of ice cliffs at the calving front, undercutting of the terminus by subaqueous melt as well as buoyancy (Benn et al., 2007). Airborne or spaceborne remote sensing techniques are not capable of distinguishing between calving and melt, but can be used to estimate total frontal ablation by combining ice flow q_f through a defined flux gate and mass changes q_t at the terminus.

In this study we investigate the interannual and seasonal variability of surface speeds of Kronebreen and Kongsbreen, two fast flowing tidewater glaciers in north-western Svalbard,
and demonstrate the importance of A_f for their total mass balance. We present a time series of area-wide speed fields based on synthetic aperture radar (SAR) offset tracking of Radarsat-2 Ultrafine data spanning the period April 2012 to December 2013. The speed maps and cross sections of the calving fronts are then combined with terminus position changes and geometry to calculate the frontal ablation of Kronebreen and the northern branch of Kongsbreen. Additionally, time series and snapshots of velocity fields from Radarsat-1 Wide, Radarsat-2 Wide and TerraSAR-X data between December 2007 and November 2013 give a broader picture on the dynamic behaviour of both tidewater glaciers. To assess the accuracy and temporal representativeness of SAR-based speed, we compare it to local glacier speed derived from 16 global positioning system (GPS) stations on Kronebreen. Temperature and precipitation records from an automatic weather station in Ny-Ålesund, are employed to investigate links between potential melt and rain water supply to the bed and glacier speed. Terminus positions are digitized from SAR intensity images and, together with the speed maps and auxiliary data, used to estimate frontal ablation.

2 Study Area

2.1 Kronebreen

Kronebreen is fed by Holtedahlfonna (together 295 km2) and Infantfonna (77 km2) and encompasses an elevation range of 0-1400 m a.s.l. (Nuth et al., 2013; Fig. 1). Kronebreen surged in 1868 or 1869 (Liestøl, 1988; Hagen et al., 1993) and until 1995, the glacier had retreated 10–11 km from its maximum extend in 1868 or 1869 (Melvold and Hagen, 1998; Svendsen et al., 2002). The retreat was interrupted by a surge of the neighbouring Kongsvegen in 1948 with a major advance of 4 km (Melvold and Hagen, 1998). At that time both glaciers shared the same calving front, but Kongsvegen successively retreated afterwards (Kääb et al., 2005) and is still in its quiescence phase with a speed of \sim2 m a$^{-1}$ at the terminus (Nuth et al., 2012). Kronebreen, in sharp contrast, is one of the fastest flowing glaciers in Svalbard (Lefauconnier et al. 1994). Speed estimates of Kronebreen exist from different sources and were summarized by Kääb et al. (2005) (Tab. 1). A constant mean annual speed of 2.15 m d$^{-1}$ at the front is reported between 1964 and 1979 (Lefauconnier (1987) in Lefauconnier et al. (1994)). Kääb et al. (2005) found an interannual variability of 15% and measured a mean speed of 1.6 m d$^{-1}$ for the period 1999-2002. Rolstad and Norland (2009)
used ground-based radar interferometry to infer speed variations on an hourly time scale and
estimated frontal retreat for single calving events. Köhler et al. (2012) used glacier speed
close to the calving front from GPS (which is also used in this study) to link the glacier speed
to seismicity of calving events. Luckman et al. (2015) combined a time series of velocity
maps based on TerraSAR-X data and information on air and sea temperature to link the
retreat of Kronebreen to the influence of warm ocean water entering the Kongsfjorden.

The frontal ablation in the mid-1980s was estimated to be 0.25 km3 a$^{-1}$ (Lefauconnier et al.,
1994). A long-term frontal ablation of 0.141 ± 0.031 Gt a$^{-1}$ was estimated for the period
1966–1990 by combining geodetic elevation changes and mass balance modelling (Nuth et
al., 2012). Frontal ablation increased to 0.198 ± 0.045 Gt a$^{-1}$ between 1990 and 2007, whereas
the surface mass balance amounted 0.006 ± 0.020 Gt a$^{-1}$ and -0.069 ± 0.029 Gt a$^{-1}$,
respectively. Net mass loss was therefore dominated by frontal ablation.

2.2 Kongsbreen

Kongsbreen is located north of Kronebreen (Fig. 1) and together with its accumulation area
Isachsenfonna, it encompasses an area of 378 km2 and an elevation range of 0-1400 m a.s.l.
(Nuth et al., 2013). It splits up into two branches, of which the fast flowing northern branch
ends in a deep fjord (~140 m depth at the 2007 terminus position), and the slow moving
southern branch is partially land terminating. The northern branch, on which we focus in this
study, retreated by >1.5 km between 1990 and 2007 and experienced extensive dynamic
thinning of the terminus area of -3 m a$^{-1}$ in that period, which is partially linked to the retreat
(Nuth et al., 2012). Note that this thinning rate refers to fixed positions upstream of the front,
but not to the retreating front, which height above sea remained roughly constant.

3 Data

3.1 Synthetic aperture radar

Synthetic aperture radar (SAR) allows imaging of the Earth’s surface regardless of
illumination conditions and cloud cover. It is therefore well suited for Arctic environments
such as Svalbard, where polar night regularly hinders the acquisition of optical data in winter
and there is widespread cloud cover during summer. The Radarsat-1 and Radarsat-2 (RS-1,
RS-2) satellites have a C-band sensor (5.3/5.405 GHz centre frequency) on board and a
repetition cycle of 24 days. The RS-1 Wide (RS-1 W) data used in this study was acquired between December 2007 and April 2008. The acquisitions were continued by RS-2 from February 2009 until November 2013. Ground resolution of the ‘Wide Mode’ data (RS-2 W) after multilooking is ~20 m. RS-2 Ultrafine (RS-2 UF) data acquired between 14 April 2012 and 29 December 2013 has a ground resolution of 2 m. Additionally, glacier surface velocity was measured from three scenes acquired in 2008 by TerraSAR-X (TSX), an X-band sensor with a centre frequency of 9.65 GHz. This data comes at a temporal resolution of 11 days, a ground resolution of 2 m and is dually polarized (VH/VV, HV/HH). A more detailed overview of the data characteristics (mode, polarization, resolution, repeat pass interval) and processing parameters (step size and search window for offset tracking) is given in Tab. 2.

3.2 Continuous Global Positioning System (GPS) observations

Between 2009 and 2013, twelve global positioning system (GPS) receivers were deployed at various locations of Kronebreen to monitor its flow. We used single-frequency GPS receivers designed to operate unattended for a period of 1-3 years (den Ouden et al., 2010). Positions are acquired every three hours and transmitted via the ARGOS satellite system and the nominal accuracy of each position is estimated to be 1.6 m (den Ouden et al., 2010).

3.3 Ice thickness

3.3.1 Kronebreen

Ice thickness data of Kronebreen were obtained in 2009 and 2010 using a pulsed 10-MHz radar system suspended beneath a helicopter (J. Kohler, personal communication, 2014). The vertical precision was conservatively estimated to be ca. ±20 m, based on cross-over analysis of the derived ice depths. This uncertainty should also include potential seasonal and inter-annual variations in ice thickness. Accuracy was more difficult to estimate; the only borehole drilled to the bed (D. Benn, personal communication) found ice thickness to be 305 m at a location where the bed map predicted 310 m.

3.3.2 Kongsbreen

Ice thickness H of Kongsbreen was not directly measured but constrained by the height of the ice cliff above sea level z_s and water depth from bathymetric surveying in 2007 as approximation for the ice thickness of the subaqueous part of the calving front z_b, with
\[H = z_s + z_b \]

where \(z_s \) was estimated to vary within a range of \(40 \pm 15 \text{ m} \) based on a SPOT-5 SPIRIT DEM derived from data acquired in September 2007 (Korona et al., 2009). The SPOT DEM has a RMSE of 6.8 m compared to ICESat data. A water depth profile \(z_b \), was extracted from the bathymetric data along a gate close to the terminus position of 2007 (Fig. 1c and e) and used as cross-section of the submerged part of the terminus. The horizontal and vertical accuracy of the bathymetry is better than 1 m and 0.1 m, respectively (B. Kuipers, personal communication). Nevertheless, higher uncertainties arise in the calculation of the frontal ablation from the retreat of Kongsbreen, as there is no information on bedrock topography and hence, ice thickness, at the exact position of the fluxgate where the actual speed is retrieved. Based on the variations in water depth within 1.5 km from the front of the 2007 terminus (3\(\sigma \) corresponding to \(\pm 15 \text{ m} \)), we assumed a conservative uncertainty of \(\pm 15 \text{ m} \). Both vertical uncertainties of \(\pm 15 \text{ m} \) each, the one from surface elevation and the one from bed elevation together making up ice thickness, should also include potential seasonal and inter-annual variations in ice thickness.

3.4 Meteorological data

Surface meltwater and rain are potential drivers of subglacial hydrology and hence ice flow. To estimate the timing and magnitude of both factors, we considered temperature and precipitation records from a meteorological station in Ny-Ålesund (78.92°N, 11.93°E, 8 m a.s.l.), some 15 km away from Kronebreen. From the temperature record, we extracted positive degree days (PDD) as a measure of daily surface meltwater production and calculated cumulative positive degree days (CPDD) as cumulative production over the melt season (Ohmura, 2001). The station record contains information on the amount and the type of precipitation (snow, rain + 29 other classes). As we are solely interested in liquid precipitation, we classified precipitation as ‘rain’, when daily mean temperature was above 0°C.
4 Method

4.1 SAR offset tracking

SAR offset tracking is a well-established technique, in which for a pair of consecutive SAR acquisitions, displacements are determined using cross-correlation of the intensity images (Strozzi et al., 2002). In our study, the size of the correlation matching-window was adjusted according to the image resolution and expected maximum displacements during the repeat pass cycle (Tab. 2). Velocities were calculated from displacements by accounting for the time interval $Δt$ between the two underlying images and geocoded using the SPOT SPIRIT DEM.

Speeds larger than the measured maximum speed at the calving front were classified as mismatches and removed. To extract speed profiles and estimate the ice flux, remaining erroneous speed estimates (local abnormal values in magnitude, identified by visual inspection) were removed, and the maps interpolated using inverse distance weighting to provide continuous speed profiles. Examples of filtered and interpolated speed maps of Kronebreen and Kongsbreen from SAR feature tracking using RS-2 UF, RS-2 W and TSX data are shown in Fig. 2.

A quantitative validation of the speed maps was carried out by comparing SAR-based displacements d against displacements of GPS stations d_{GPS} on Kronebreen and against stable ground. The first test between RS-2 UF displacements $d_{RS-2 UF}$ and GPS displacements d_{GPS} for all repeat-pass periods showed very good agreement ($R^2 = 0.99, RMSE = 0.11 \text{ m} \text{ d}^{-1}$, $d_{RS-2 UF} = 0.92 \cdot d_{GPS} + 0.10$), although SAR underestimated local speed at the GPS stations by 7.6% (Fig. 3). Displacements derived from RS-2 W data $d_{RS-2 W}$ are less accurate ($R^2 = 0.90 \ , \ RMSE = 0.17 \text{ m} \text{ d}^{-1} \ , \ d_{RS-2 W} = 0.87 \cdot d_{GPS} + 1.80 \)$, but the tendency to underestimate is only observed for large displacements.

The apparent displacement of stable bedrock points is an accuracy measure for the co-registration process. We estimated the accuracy of each displacement map based on the mean displacements ($± 1σ$) of 24 manually selected stable points to $0.9 ± 1.0 \text{ m}$ for RS-2 UF, $3.3 ± 2.6 \text{ m}$ for RS-1 W, $1.9 ± 1.6 \text{ m}$ for RS-2 W and $1.0 ± 0.6 \text{ m}$ for TSX (Fig. 4).

4.2 Frontal ablation

The calculation of A_f of Kronebreen and Kongsbreen closely follows the approach described in Dunse et al. (2015), which sums up the ice flux q_{fg} through a fixed fluxgate above the
position of the calving front, which is variable in time, and the mass change of the terminus below the fluxgate \(q_t \) due to advance or retreat:

\[
A_f = q_{fg} + q_t
\]

(1)

The spatially fixed fluxgate is defined approximately perpendicular to the ice flow, 250 -1300 m upglacier from the actual calving front (Fig. 1), where ice surface speed \(v_{fg} \) could be extracted from all RS-2 UF based speed maps. \(q_{fg} \) can be written as

\[
q_{fg} = v_{da} \cdot H_{fg} \cdot w_{fg},
\]

(2)

where \(H_{fg} \) is the ice thickness along the fluxgate and \(w_{fg} \) is the width of the fluxgate. The depth-averaged speed \(v_{da} \) along the fluxgate is \(v_{fg} \) along the fluxgate weighted by a correction factor \(f_{da} \) between 0.8 and 1.0 accounting for a likely range of basal drag (Cuffey and Paterson, 2010):

\[
v_{da} = f_{da} \cdot v_{fg}
\]

(3)

4.2.1 Terminus position changes

Frontal ablation associated with position changes of the calving front between two subsequent SAR acquisitions are calculated by multiplying the observed changes in glacier-area downstream from the fixed fluxgate with an average ice thickness of the terminus \(H_t \)

\[
q_t = H_t \cdot \frac{\Delta A_t}{\Delta t},
\]

(4)

where \(H_t \) is the ice thickness at the terminus in the vicinity of the calving front. \(\Delta A_t \) is the area change of the terminus over the repeat-pass period \(\Delta t \) between successive SAR acquisitions. We consider the calving front as relatively stable, when position changes are within a few tens of meters.

4.2.2 Depth-averaged speed and uncertainties

In this study, estimates of the frontal ablation (Eq. 1) are always given as range \(A_{f0.8} - A_{f1.0} \), with the lower estimate \(A_{f0.8} \) based on a correction factor for the depth-average speed of \(f_{da} = 0.8 \) in the calculation of the ice flux (Eq. 3),

\[
A_{f0.8} = q_{fg0.8} + q_t = 0.8 \cdot v_{fg} \cdot H_{fg} \cdot w_{fg} + H_t \cdot \frac{\Delta A_t}{\Delta t},
\]

(5)
and $A_{f1.0}$ with $f_{da} = 1.0$.

\[A_{f1.0} = q_{fg\,1.0} + q_t = 1.0 \cdot v_{fg} \cdot H_{fg} \cdot w_{fg} + H_t \cdot \frac{\Delta A_t}{\Delta t} \]

(6)

Mass loss at the terminus q_t is independent of f_{da} (Eq. 4).

Additionally, we provide in brackets an upper and lower boundary of the frontal ablation, $A_{f\text{ min}}$ and $A_{f\text{ max}}$ based on the uncertainties (σ) of the input variables (Tab. 3). $A_{f\text{ min}}$ is calculated as

\[A_{f\text{ min}} = q_{fg\text{ min}} + q_{t\text{ min}} \]

(7)

The lower boundary of the ice flux $q_{fg\text{ min}}$ is estimated by substituting Eq. 3 into Eq. 2,

\[q_{fg\text{ min}} = f_{da\,\text{ min}} \cdot v_{fg\text{ min}} \cdot H_{fg\text{ min}} \]

(8)

with $f_{da\,\text{ min}} = 0.8$, $v_{fg\text{ min}} = v_{fg} - \sigma_{v_{fg}}$ and $H_{fg\text{ min}} = H_{fg} - \sigma_{H_{fg}}$.

The minimum mass change through terminus position changes $q_{t\text{ min}}$ is calculated based on Eq. 4, depending on whether the glacier advanced or retreated between time t and $t+1$. In case the glacier advanced ($\Delta A_t > 0$), the mass gain was minimal, when the height of the calving front H_t was minimal ($H_{t\text{ min}} = H_t - \sigma_{H_t}$):

\[q_{t\text{ min}} = H_{t\text{ min}} \cdot \frac{\Delta A_{t\text{ min}}}{\Delta t} \]

(9)

In the other case, when the glacier advances ($\Delta A_t < 0$), the mass loss is maximal, when the height of the calving front H_t is maximal ($H_{t\text{ max}} = H_t + \sigma_{H_t}$):

\[q_{t\text{ min}} = H_{t\text{ max}} \cdot \frac{\Delta A_{t\text{ min}}}{\Delta t} \]

(10)

In both cases, the minimal change in areal extent is calculated to

\[\Delta A_{t\text{ min}} = A_t - A_{t+1} - \sigma_{A_f} \]

(11)

As A_t and A_{t+1} are independent, their uncertainties are propagated by the root of the sum of squares (RSS) of the uncertainty each component as

\[\sigma_{A_t} = \sqrt{\sigma_A^2 + \sigma_{A_{t+1}}^2} \]

(12)

Similarly, the maximal frontal ablation $A_{f\text{ max}}$ is calculated as

\[A_{f\text{ max}} = q_{fg\text{ max}} + q_{t\text{ max}} \]

(13)
where, based on Eq. 2 and 3, the maximum ice flux $q_{fg \max}$ amounts to

$$q_{fg \max} = f_{da \ max} \cdot v_{fg \ max} \cdot H_{fg \ max}$$ \hspace{1cm} (14)

with $f_{da \ max} = 1.0$, $v_{fg \ max} = v_{fg} + \sigma_{ve_{fg}}$ and $H_{fg \ max} = H_{fg} + \sigma_{H_{fg}}$. \hspace{1cm} (15)

The maximal mass change through terminus position changes $q_{t \ max}$ is calculated based on Eq. 4, depending on whether the glacier advanced or retreated between time t and $t+1$ as

$$q_{t \ max} = H_{t \ max} \cdot \frac{\Delta A_{t \ max}}{\Delta t}$$, when $\Delta A_{t} > 0$, or \hspace{1cm} (16)

$$q_{t \ max} = H_{t \ min} \cdot \frac{\Delta A_{t \ max}}{\Delta t}$$, when $\Delta A_{t} < 0$, \hspace{1cm} (17)

with the maximum change in areal extent

$$\Delta A_{t \ max} = A_{t} - A_{t+1} + \sigma_{A_{f}}$$ \hspace{1cm} (18)

5 Results

In the following two sections, we report on recent variations in flow speed, terminus position and frontal ablation of Kronebreen (Section 5.1) and Kongsbreen (Section 5.2).

5.1 Kronebreen

5.1.1 Glacier surface speed

In three out of four years during the observation period, Kronebreen had a distinct seasonal cycle with minimum speed in autumn and winter (here called background speed), a speed-up in spring and a well pronounced summer peak (Fig. 5). Interannual variability was high, e.g. summer maxima varied from 2.1 m d$^{-1}$ in June/July 2011 to 3.2 m d$^{-1}$ in July/August 2013.

Winter background speeds and summer speedup in 2010 had a medium amplitude compared to the following years (Fig. 5 and Fig. 6), coinciding with the lowest melt water production during the observation period ($CPDD_{2010} = 451 \, ^{\circ}C \, d$). In 2011 instead, maximum summer speed was lower than during the previous year, despite higher $CPDD$ of 600 $^{\circ}C \, d$. An abrupt speedup occurred after the ice flow had returned to its slowest speed during the observation period in autumn/winter 2011. This event was triggered by a remarkable rainfall of 98.0 mm, almost one fourth of the long-term (1981-2010) annual mean precipitation in Ny Ålesund of 427 mm a$^{-1}$ on 30 January 2012 (Forland et al., 2011). Afterwards, the speed continued to increase linearly until the summer speedup 2012 coinciding with strong melt ($CPDD_{2012} =$
545 °C d). After surface melt had ceased, the speed remained high. Measured background speed during winter 2012/2013 was the highest in the period 2010 to 2013.

The most extensive summer speed up was observed in 2013, when ice flow speed peaked at 3.2 m d⁻¹ near the terminus (CPDD\textsubscript{2013} = 544 °C d). Accelerated flow reached far inland, with speeds greater than 1 m d⁻¹ measured up to 6 km inland from the calving front at an elevation of 213 m (Fig. 5b). After a secondary peak coinciding with an intense rain event, the speed decreased to a low background speed in autumn 2013.

5.1.2 Terminus-position changes

During the entire observation period December 2007 to December 2013 Kronebreen retreated by ~1.1 km, resulting in an area loss of 2.8 km² (Fig. 7). Between 2007 and 2009 the calving front of Kronebreen was relatively stable. However, we observed seasonal variations in front position of 100 - 300m, characterized by advance in spring, retreat in autumn and minor fluctuations of a few tens of meters in both summer and winter. Between May 2011 and December 2011 the terminus retreated up to 400 m, only stabilized to a pinning point in the middle of the caving front, from which it then retreated until March 2012. In 2012, for once, the front did not advance during the summer speed-up and between June 2012 and July 2012 the area which was pinned before, retreated behind the rest of the calving front. Afterwards the retreat continued along the whole terminus until 10 December 2012. Kronebreen advanced again until 3 May 2013 and retreated from July until December 2013.

5.1.3 Frontal ablation

The quality of the speed maps based on RS-2 UF was good enough to extract speed profiles along the fluxgate close to the calving front, except for the map based on the image pair 3 May 2013 – 24 September 2013, due to the long gap between the acquisitions. The strong surface changes over such long period led to complete failure of cross-correlation within the offset tracking as indicated by too low signal-to-noise ratios for the offsets obtained. Consequently we calculated the frontal ablation \(A_f\) for each repetition cycle in the period 14 April 2012 to 29 December 2013 by excluding the flux between May and September 2013 (Fig. 8). Mean frontal ablation rates of Kronebreen during that period amounted to \(q = 0.21 - 0.25\) Gt a⁻¹ (0.16 - 0.31 Gt a⁻¹) (first range refers to different depth-averaged speed, second range to the complete error budget; see 4.2.2), whereof 0.06 Gt a⁻¹ was lost through terminus retreat (\(q_t\)) and 0.19 Gt a⁻¹ through ice flux (\(q_{fg}\)).
We also provide ablation rates for the period 8 May 2012 – 3 May 2013, a temporal subset of the above full period. This period spans an entire year and is therefore unbiased towards fast flow in summer or slow speed in winter when comparing the data to other studies. Between May 2012 and May 2013 frontal ablation was \(q = 0.22 - 0.27 \text{ Gt a}^{-1} \) (0.17 - 0.33 Gt a\(^{-1}\)) (for ranges see above paragraph) with \(q_{fr} = 0.21 \text{ Gt a}^{-1} \) and \(q_t = 0.06 \text{ Gt a}^{-1} \) (Tab. 5).

5.2 Kongsbreen

5.2.1 Glacier surface speed

The coverage of the velocity maps derived for Kongsbreen is not as complete as for Kronebreen and continuous in-situ GPS measurements are not available. Therefore we choose two points \(P_{#1} \) and \(P_{#2} \) on Kongsbreen, where speed could be extracted from most of the velocity maps (see Fig. 10). These data indicate a seasonal velocity pattern of Kongsbreen similar to the one of Kronebreen between 2010 and 2011, with relatively stable background velocities during autumn and winter interrupted by a summer speedup during the melt season (Fig. 10).

The lowest speed at point \(P_{#1} \) was measured in autumn 2011 (\(v_{P_{#1}} = 0.45 \text{ m d}^{-1} \)) and increased linearly from then on. No data is available at the time of the extreme rain event in January 2012, but speed was at a comparable or lower level at \(P_{#1} \) and \(P_{#2} \) before than after the event, indicating that it had only a minor or short-term impact on glacier flow. Interestingly, the distinct summer peak was missing in 2012. The glacier flow stabilized in autumn 2012 and the highest speed of that year was measured in November / December (\(v_{P_{#1}} = 1.32 \text{ m d}^{-1} \)) keeping that level until summer 2013. After a short and minor speed up in June 2013 (\(v_{P_{#1}} = 1.39 \text{ m d}^{-1} \)), the speed dropped to 0.82 m d\(^{-1}\) in August 2013, just to accelerate to the highest observed speed of 1.43 m d\(^{-1}\) in November 2013. The speed-ups at Kongsbreen did not reach as far upglacier as in the case of Kronebreen, e.g. speeds greater than 1 m d\(^{-1}\) were measured up to 3.5 km inland from the calving front (Figs 9 and 10). The evolution of the speed at \(P_{#2} \) follows a similar pattern, although the distinct summer peaks did not develop as \(P_{#2} \) is located ~7 km upglacier from the calving front at an elevation of 319 m.

5.2.2 Terminus-position changes

Between December 2007 and December 2013, the terminus of Kongsbreen retreated up to 1.8 km, equivalent to an area loss of 2.5 km\(^2\). As for Kronebreen, the calving front position of
Kongsbreen generally followed a seasonal cycle, characterized by an advance in spring, a retreat in autumn and minor fluctuations during winter and summer.

SAR images acquired in 2007 and 2008 do not indicate major changes in front position (Fig. 11). However, after autumn 2008, the glacier started to retreat. Between February and June 2009 Kongsbreen re-advanced by ~200 m, but did not reach its 2007/2008 position. There is a data gap until April 2010, but the above-mentioned typical spring advance until June 2010 was captured. Kongsbreen reached a similar position as in 2009, only the southern part did not advance as much as the rest. The same sequence of front-position changes repeated in 2011, with an advance until May 2011 towards the 2009 summer position, which was kept until July 2011. Kongsbreen then started to retreat, with a significant portion of the retreat (~500 m) occurring between August 2011 and December 2011. We detected a minor advance until March 2012 but similar to Kronebreen no major advance occurred during spring. Between July 2012 and November 2012 the autumn recession happened, especially of the southern part. After relatively stable front position until December 2012, Kongsbreen advanced up to 350 m during spring and summer 2013. The yearly retreat started after July 2013 in the northern part and accelerated in the southern part after August 2013.

5.2.3 Frontal ablation

Mean frontal ablation rates of Kongsbreen between 14 April 2012 and 29 December 2013 by excluding the flux between 3 May and 24 September 2013 amounted to $q = 0.14-0.16$ Gt a$^{-1}$ (0.11-0.20 Gt a$^{-1}$) (first range refers to different depth-averaged speed, second range to the complete error budget; see 4.2.2), whereof 0.05 Gt a$^{-1}$ was lost through terminus position changes and 0.11 Gt a$^{-1}$ through ice flux (Tab. 5). Between May 2012 and May 2013, frontal ablation was $q = 0.15-0.17$ Gt a$^{-1}$ (0.12-0.21 Gt a$^{-1}$) (for ranges see previous sentence) with $q_{fs} = 0.11$ Gt a$^{-1}$ and $q_{t} = 0.06$ Gt a$^{-1}$. The temporal evolution of the frontal ablation is given by the frontal ablation between each RS-2 UF acquisition in Fig 11.

Please note that the assumed cross-sectional fluxgate area and thus the computed ice flux represent a minimum estimate. We chose a location of the fluxgate (Fig. 1) that allows for extraction of values from all velocity maps. As Kongsbreen retreated significantly (~ several hundred meters) since the first acquisition in April 2012, the fluxgate was not located close to the calving front at the time of most of the acquisitions, but up to several hundred meters upglacier, where the actual ice thickness is larger and speed is lower than close to the
terminus. Upper and lower boundary of q should in the case of Kongsbreen not be interpreted directly as formal accuracy but as the likely range based on the large uncertainties in the constraint of the fluxgate geometry.

6 Discussion

We described the interannual and seasonal variability in speed, calving front positions and frontal ablation of Kronebreen and Kongsbreen and confirm the high interannual variability in speed of Kronebreen found e.g. by Kääb et al. (2005).

Over most of the observation period, the variability in glacier speed of both glaciers seems to be correlated with variations in amount and timing of surface melt water input and rainfall. We attribute the observed correlation to the influence of melt water and rainfall on the water pressure at the bed and basal lubrication according to the theory of Iken and Bindschadler (1986). We suggest, yearly speed-ups in summer are linked to increased availability of water in an inefficient drainage system at the glacier bed at the start of the melt season, which leads to enhanced basal lubrication. The water then successively creates a channelized system through which it can be drained efficiently, followed by a slowdown of the glacier to its autumn and winter background speed. Background speed is the almost constant minimum speed in autumn and winter. After the effective channelized system has evolved the speed drops as there is a lack of lubricant. When there is no longer enough water supply to sustain the channelized system at the end of the melt season, an inefficient system evolves which also lacks of lubricant, unless it is not raining (see secondary speed peaks).

This behaviour has been observed at many glaciers in different regions in the world e.g. the Alps (Iken and Bindschadler, 1986), Svalbard (Dunse et al., 2012), Canada (Copland et al., 2003) and Alaska (Burgess et al., 2013). In each year, secondary speed peaks were detected after the main melt induced summer speedup which are caused by rain events; the subglacial system is saturated for a short period again, allowing enhanced basal sliding.

The summer 2011 with the highest melt production ($\text{CPDD}_{2011} = 602$ °C d) is particularly interesting, as the maximum speed at the calving front of Kronebreen stayed below the level of 2010 when summer was cooler ($\text{CPDD}_{2010} = 451$ °C d). In 2011 the channelized system must have evolved faster, and the water was transported away from the bed more efficiently,
hence leading to an early slowdown in the melt season. This behaviour has previously been explained by Schoof (2010).

The flow of Kongsbreen was modulated from this typical pattern in 2012 and 2013, when the speed did not peak distinctively in summer, but reached its maximum in late autumn. We speculate that an inefficient drainage system was maintained throughout. The water from the rain event was not evacuated and high water pressure maintained throughout the winter and spring. As winter velocities where already enhanced, the following summer speedup is less pronounced than in other years.

The increase in speed, which started already in autumn 2011, coincides with the onset of the retreat and hence reduced the backstress. Kongsbreen had already retreated by 1.0 - 1.7 km between 1990 and 2000 (Nuth et al. 2013), but was relatively stable since then.

In general glacier advance occurs when the glacier flows at a higher rate than frontal ablation occurs and a glacier retreats when frontal ablation rates exceeds the glacier flow. Advances regularly occur in spring and summer when the velocity is especially high due to enhanced lubrication and calving rates are low (Köhler et al., 2012). The timely occurrence of the retreat in autumn is in line with observations from Köhler et al. (2012), who found that in 2009 and 2010 calving-related seismicity at Kronebreen predominantly occurred in autumn, after the peak in velocity. In late summer and autumn decreased velocity and warm ocean water entering the fjord, hence increased melt, undercutting and calving, lead to retreat (Luckman et al., 2015).

We want to highlight here, that the RS-2 data covers the start of the retreat of Kronebreen in autumn 2011 after a prolonged period of stable front positions since the 1990s (Nuth et al. 2012). One reasonable explanation is the detachment of Kronebreen from its long-term pinning point and retreat in a deeper section of the fjord. Warm water entering the fjord in autumn 2011 might have triggered the instability by intensifying melt and stronger undercutting at the calving front, which subsequently raised the calving rate as observed by Luckman et al. (2015) in 2013. The influence of the warm water might also have played an important role in spring 2012, when, in contrast to previous years and although the velocity was highest, no advance occurred, and frontal ablation must have occurred at the same rate as the glacier moved. Sea-ice or ice mélange usually does not occur close to the calving front of Kronebreen and Kongsbreen, and hence does not have an influence on the backpressure and glacier speed.
The SAR-based ice flux of the period May 2012 to May 2013 of 0.21 Gt a⁻¹ (0.128 - 0.255 Gt a⁻¹) (range refers to the complete error budget; see 4.2.2) is in line with the estimate of the long-term ice flux of Kronebreen between 1990 - 2007 of 0.198 ± 0.045 Gt a⁻¹, derived from DEM differencing and mass balance modelling (Nuth et al., 2012). The importance of mass loss at the terminus is highlighted by the comparison to the surface mass balance of -0.069 ± 0.029 (Nuth et al., 2012). The overall ice flux to the ocean from all 163 Svalbard glaciers was estimated to 6.75 ± 1.7 Gt a⁻¹ (Blaszczyk et al., 2009) and Kronebreen and Kongsbreen are major contributors with shares of 4.0% and 2.5%, respectively. Nevertheless, this number does not include mass loss related to major surges, such as of Basin-3 on Austfonna since 2012 (4.2 ± 1.6 Gt a⁻¹, Dunse et al., 2015) and between 2009 and 2013 of Nathorstbreen (Sund et al., 2014).

The results of this study are largely based on speed maps derived from SAR feature tracking using RS-2 UF, RS-2 W and TSX data, whose quality mainly depends on high SAR image resolution and persistent surface conditions. Speed maps based on RS-2 UF data acquired in spring revealed good matching results (Fig. 2a) even within the slow moving upper regions of the glaciers. In the summer data the number of well-matched displacements decreased in these areas (Fig. 2b), because of extensive melt changing the surface characteristics and destroying the visual coherence of the SAR intensity between the two acquisitions. Notably, the algorithm was able to achieve reasonable glacier speed estimates along the centreline of Kronebreen (Fig. 5a) and partially also Kongsbreen (Fig. 9) over a period of 144 days or 6 RS-2 repetition cycles (3 May and 24 September 2013). The lowest quality comes from the medium resolution RS-2 W data, with a resolution of 100 m for the velocity maps (compared to 50 m for RS-2 UF) and frequent occurrence of mismatches resulting in gaps in the velocity maps, especially for the narrow Kongsbreen (Fig. 2c).

TSX, with a similar geometric resolution as RS-2 UF, provides less smooth speed fields and good matches are not achieved from as far upglacier as with RS-2 UF (Fig. 2d). This might be related to the different frequency, although a direct comparison is not possible here as the TSX and RS-2 UF acquisitions do not overlap temporally. Usually, X-band coherence is considered less stable over time than C-band, due to its lower penetration depth. This is partially compensated by the shorter revisit time of TSX of 11 days, which then again is another possible reason for the absence of speed estimates in the slow moving, upper parts of the glaciers, as offset tracking has limited capability to resolve particularly small
displacements. Interferometry fails completely for all SAR data available over glaciers due to loss of phase coherence.

7 Conclusions

For the first time, the speed patterns of Kronebreen and Kongsbreen were studied over the period of multiple years at a high temporal and spatial resolution. We used high and medium resolution SAR data from RS-1, RS-2 and TSX between 2007 and 2013 to extract glacier speed of Kronebreen and Kongsbreen in NW-Svalbard. Especially the RS-2 UF and TSX data at high resolution provided area-wide displacement estimates with very high accuracy compared to GPS data from different stations on Kronebreen and stable ground. Due to the coarser resolution of the RS-1/RB-2 W data, the displacements are less accurate, especially for Kongsbreen and at the border between Kronebreen and the slow moving Kongsvegen.

Both glaciers studied are among the fastest glaciers in Svalbard with maximal speeds close to the calving front of 3.2 m d$^{-1}$ at Kronebreen in July 2013 and 2.7 m d$^{-1}$ at Kongsbreen in December 2012. Part of the ice-flow variations is closely linked to the amount and timing of surface meltwater production and rainfall, both of which have a strong influence on the basal water pressure and lubrication. Since 2007 both glaciers also retreated significantly, Kronebreen by 2.1 km2 and Kongsbreen by 2.4 km2, with the major part occurring after autumn 2011. The retreat and reduction of backstress is a possible explanation for high background velocities of Kronebreen and Kongsbreen in 2012 and 2013. The mean frontal ablation rate of Kronebreen between May 2012 and May 2013 was estimated from RS-2 UF data to 0.22 - 0.27 Gt a$^{-1}$ (0.17- 0.33 Gt a$^{-1}$) (first range refers the depth-averaged speed, second range in brackets to the complete error budget; see 4.2.2), divided into ice flux of 0.21 Gt a$^{-1}$ and mass loss related to terminus position changes of -0.06 Gt a$^{-1}$. In the same period Kongsbreen lost 0.15 - 0.17 Gt a$^{-1}$ (0.12 - 0.21 Gt a$^{-1}$) whereof 0.11 Gt a$^{-1}$ came from the flux through the fluxgate and additionally -0.06 Gt a$^{-1}$ from terminus retreat. This makes both glaciers major contributors to the overall mass loss of the Svalbard archipelago through frontal ablation with shares of 4.0% and 2.5%, respectively.

Author contribution
T.S. and A.K. designed the study. T.S. processed the data and wrote the manuscript. A.K. provided the RADARSAT and TerraSAR-X data. T.D. assisted in calculating the calving flux. J.K. provided the GPS data and the bedrock map of Kronebreen. C.H.R provided the GPS data. All co-authors contributed to or commented on the manuscript.

Acknowledgements

T.S. thanks T. V. Schuler and C. Nuth for discussions around the manuscript. This study was supported by the Research Council of Norway through RASTAR, grant number 208013, CRYOMET, grant number 214465. Fieldwork was supported by funding from the Svalbard Science Forum (NFR, RisID 6183). This publication is contribution number 57 of the Nordic Centre of Excellence SVALI, “Stability and Variations of Arctic Land Ice”, funded by the Nordic Top-level Research Initiative (TRI). A. K. has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC grant agreement no. 320816, and the ESA project Glaciers_cci (4000109873/14/I-NB).

RADARSAT data was provided by NSC/KSAT under the Norwegian-Canadian Radarsat agreements 2007-2013. TerraSAR-X data are courtesy of DLR under proposal LAN_0211. Meteorological data was provided by the Norwegian Meteorological Institute, the Kongsfjord bathymetry by Statens Kartverk and Landsat 8 OLI data by USGS. The GPSs from the Institute for Marine and Atmospheric research, Utrecht (IMAU), Utrecht University, were funded by the Netherlands Polar Program (NPP) and the Netherlands Organization of Scientific Research, Earth and Life Sciences section (NWO/ALW).

References

Kohler, J., in preparation.

Tab. 1 Studies on speed of Kronebreen (sources: Kääb et al. (2005), Rolstad and Norland (2009), Köhler et al. (2012)).

<table>
<thead>
<tr>
<th>Study</th>
<th>Data / Method</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pillewizer and Voigt, 1968</td>
<td>terrestrial photogrammetry</td>
<td>1962–65</td>
</tr>
<tr>
<td>Lefauconnier, 1987</td>
<td>terrestrial photogrammetry</td>
<td>1983–86</td>
</tr>
<tr>
<td>Melvold (1992)</td>
<td>terrestrial photogrammetry stake measurements</td>
<td>1990</td>
</tr>
<tr>
<td>Kääb et al. (2005)</td>
<td>Landsat and ASTER image matching</td>
<td>1999-2002</td>
</tr>
<tr>
<td>Rolstad and Norland (2009)</td>
<td>ground based radar / interferometry</td>
<td>2007</td>
</tr>
<tr>
<td>Köhler et al. (2012)</td>
<td>GPS</td>
<td>2009/2010</td>
</tr>
</tbody>
</table>
Tab. 2 Synthetic aperture radar data characteristics: satellite, sensor mode, polarization, resolution of intensity images and speed maps as well as step size and search window used for offset tracking.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Mode</th>
<th>Acronym</th>
<th>Polarization</th>
<th>Repeat pass (days)</th>
<th>Resolution int./speed (m)</th>
<th>Step size (pixels)</th>
<th>Search window (pixels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radarsat-1</td>
<td>Wide</td>
<td>RS-1 W</td>
<td>HH</td>
<td>24</td>
<td>20/100</td>
<td>5x20</td>
<td>40x160</td>
</tr>
<tr>
<td>Radarsat-2</td>
<td>Wide</td>
<td>RS-2 W</td>
<td>HH</td>
<td>24</td>
<td>20/100</td>
<td>5x20</td>
<td>40x160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HH</td>
<td>≥ 48</td>
<td>20/200</td>
<td>10x40</td>
<td>80x320</td>
</tr>
<tr>
<td></td>
<td>Ultrafine</td>
<td>RS-2 UF</td>
<td>HH</td>
<td>24</td>
<td>2/50</td>
<td>27x26</td>
<td>135x130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HH</td>
<td>≥ 48</td>
<td>2/50</td>
<td>27x26</td>
<td>536x488</td>
</tr>
<tr>
<td>TerraSAR-X</td>
<td>HRSL</td>
<td>TSX</td>
<td>VH/VV, HV/HH</td>
<td>11</td>
<td>2/50</td>
<td>24x23</td>
<td>96x92</td>
</tr>
<tr>
<td>Variable</td>
<td>Uncertainty</td>
<td>Explanation, value and source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_{fg}</td>
<td>$\sigma_{H_{fg}} = \pm 20 \text{ m}$</td>
<td>Local ice thickness along fluxgate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ice thickness across fluxgate based on helicopter radar; Uncertainty from cross-track comparison.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_t</td>
<td>$\sigma_{H_t} = \pm 20 \text{ m}$</td>
<td>Mean ice thickness in area of terminus position changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$H_t = 122 \text{ m}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ice thickness based on helicopter radar in area of terminus position changes during observation period; Uncertainty from cross-track comparison.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_{fg}</td>
<td>$\sigma_{v_{fg}} = \pm 0.11 \text{ m d}^{-1}$</td>
<td>Speed value at fluxgate increment from RS-2 UF speed maps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\sigma_{v_{fg}}$ is the RMSE of comparison between RS-2 UF and GPS displacements.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔA</td>
<td>$\sigma_t = \pm 8.0 \text{ m}$</td>
<td>Areal change of terminus derived from calving front position changes from repeat RS-2 UF intensity images.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estimated uncertainty σ_t due to imaging geometry and digitizing error of terminus position results in uncertainty of ΔA. $\sigma_{\Delta A}$ is determined by RSS of deviation from minimum and maximum extent of A at times t and t+1 (Eq. 12).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4 Frontal ablation of Kongsbreen: input variables – values, sources and uncertainties.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Uncertainty</th>
<th>Explanation, value and source</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_{sf}</td>
<td>$\sigma_{z_{sf}} = \pm 15$ m</td>
<td>Local surface elevation in vicinity of the calving front. $z_{sf} = 40$ m. Height estimation based on SPOT Spirit DEM of 2007. $\sigma_{z_{sf}}$ is the RMSE compared to ICESat data (6.8 m) (Korona et al. 2009) + melt.</td>
</tr>
<tr>
<td>z_{bg}</td>
<td>$\sigma_{z_{bg}} = \pm 15$ m</td>
<td>Local bedrock depth along gate G2. Water depth extracted from bathymetry along fluxgate close to the calving front of 2007. $\sigma_{z_{bg}}$ is the variation (3σ) of water depth in deglaciated area of fjord close to the calving front.</td>
</tr>
<tr>
<td>H_{sf}</td>
<td>$\sigma_{H_{sf}}$</td>
<td>Local ice thickness along fluxgate. $H_{sf} = z_{sf} - z_{bg}$. Combination of height estimate and water depth; Uncertainty = RSS of errors in z_{sf} and z_{bg}.</td>
</tr>
<tr>
<td>z_{st}</td>
<td>$\sigma_{z_{st}} = \pm 15$ m</td>
<td>Mean elevation along fluxgate. $z_{st} = 40$ m. Height estimation based on SPOT Spirit DEM of 2007 (Korona et al. 2009). $\sigma_{z_{st}}$ is estimated from RMSE of SPOT SPIRIT DEM compared to ICESat data (6.8 m) + melt.</td>
</tr>
<tr>
<td>z_{bt}</td>
<td>$\sigma_{z_{bt}} = \pm 15$ m</td>
<td>Local bedrock depth along fluxgate. Mean water depth along flux gate close to the calving front of 2007 (Fig. 1). $\sigma_{z_{bt}}$ is the variation (3σ) of water depth in deglaciated area of fjord close to the calving front.</td>
</tr>
<tr>
<td>H_{t}</td>
<td>$\sigma_{H_{t}}$</td>
<td>Total height of the calving front. $H_{t} = z_{st} - z_{bt}$. $\sigma_{H_{t}}$ is the RSS of errors in z_{st} and z_{bt}.</td>
</tr>
<tr>
<td>v_{fg}</td>
<td>$\sigma_{v_{fg}} = \pm 0.11$ m d$^{-1}$</td>
<td>Speed value at fluxgate increment from RS-2 UF speed maps. $\sigma_{v_{fg}}$ is the RMSE of comparison between RS-2 UF and GPS displacements.</td>
</tr>
<tr>
<td>ΔA</td>
<td>$\sigma_t = \pm 8.0$ m</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td></td>
</tr>
</tbody>
</table>

Areal change of terminus derived from calving front position changes from repeat RS-2 UF intensity images.

Estimated uncertainty σ_t due to imaging geometry and digitizing error of terminus position results in uncertainty of ΔA. $\sigma_{\Delta A}$ is determined by RSS of deviation from minimum and maximum extent of A at times t and $t+1$ (Eq. 12).
Tab. 5 Total frontal ablation of Krongbreen and Kongsbreen and its components, ice flux and terminus position changes, in Gt a\(^{-1}\) during \(P_1\) (14 April 2012 - 29 December 2013, excluding 3 May 2013 - 24 September 2013) and \(P_2\) (8 May 2012 – 3 May 2013). Speed based on a depth averaged velocity \(f_{da} = 0.8\) is considered as conservative estimate. Upper and lower boundaries based on error analysis are given in brackets.

<table>
<thead>
<tr>
<th>Glacier</th>
<th>Period</th>
<th>(f_{da})</th>
<th>Ice flux (Gt a(^{-1}))</th>
<th>(\Delta) Terminus (Gt a(^{-1}))</th>
<th>Frontal ablation (Gt a(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krongbreen</td>
<td>1</td>
<td>0.8</td>
<td>0.153 (0.118/0.194)</td>
<td>-0.059</td>
<td>0.212 (0.163/0.268)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>0.192 (0.150/0.238)</td>
<td>(-0.074/-0.045)</td>
<td>0.250 (0.195/0.312)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.8</td>
<td>0.165 (0.128/0.207)</td>
<td>-0.059</td>
<td>0.224 (0.173/0.282)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>0.206 (0.163/0.255)</td>
<td>(-0.074/-0.045)</td>
<td>0.266 (0.208/0.329)</td>
</tr>
<tr>
<td>Kongsbreen</td>
<td>1</td>
<td>0.8</td>
<td>0.089 (0.069/0.112)</td>
<td>-0.050</td>
<td>0.140 (0.109/0.174)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>0.122 (0.088/0.138)</td>
<td>(-0.062/-0.040)</td>
<td>0.162 (0.128/0.200)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.8</td>
<td>0.088 (0.068/0.111)</td>
<td>-0.061</td>
<td>0.149 (0.117/0.185)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>0.110 (0.087/0.136)</td>
<td>(-0.074/-0.049)</td>
<td>0.171 (0.136/0.210)</td>
</tr>
</tbody>
</table>
Fig. 1 (a) The Svalbard archipelago with location of study area. (b) NW-Svalbard from Landsat 8 OLI including Kronebreen (KrB) with its accumulation areas Holtedahlfonna (HoF) and Infantfonna (InF), as well as Kongsbreen (KoB) fed by Isachsenfonna (IsF). (c) Close-up of the area covered by Radarsat-2 Ultrafine images. Positions of 16 GPS stations on Kronebreen between September 2009 and December 2013, the fluxgates used to constrain the cross-section of the termini and flow lines used to extract speed profiles. Glacier outlines (2000) taken from Nuth et al. (2013).
Fig. 2 Selected speed fields of Kronebreen and Kongsbreen from SAR feature tracking. (a) RS-2 UF 14 April 2012-08 May 2012 (b) RS-2 UF 25 June 2012-19 July 2012 (c) RS-2 W 05 April 2012-29 April 2012 (d) TSX 27 April 2008 – 08 May 2008.
Fig. 3 Validation of glacier displacement: Displacements extracted from SAR maps at the position of GPSs and plotted against GPS displacements (a) RS-2 UF vs. GPS (b) RS-2 W vs. GPS.
Fig. 4 SAR displacement maps accuracy assessment. Boxplots of displacements of 16 points on stable ground for each displacement map (a) RS-2 UF (b) TSX (c) RS-1 W (d) RS-2 W.
Fig. 5 Time series of glacier speed along centerline (see Fig. 1) of Kronebreen between (a) 14 April 2012 and 29 December 2013 based on RS-2 UF data and (b) 06 December 2007 and 26 November 2013 based on RS-1 W data (2007-2008) and RS-2 W data (2009-2013), respectively.
Fig. 6 Time series of speed of Kronebreen between 2010 and 2013 linked to water supply by melt (positive degree days (°C) and rain events (mm) from weather station in Ny-Ålesund). Speed of Kronebreen (m d⁻¹) derived from RS-2 (green) and GPS (blue/red/orange).
Fig. 7 Selected calving front positions of Kronebreen between December 2007 and December 2013. Background image RS-2 UF of 29 December 2013.
Fig. 8 Frontal ablation of Kronebreen between 14 April 2012 and 29 December 2013 and components, ice flux and terminus position changes. Note that the ice flux could not be estimated between May and September 2013 and therefore set to 0.0 Gt a\(^{-1}\) as the quality of the speed map was not sufficient to extract glacier speed along the fluxgate.
Fig. 9 Time series of speed along centerline of Kongsbreen (Fig. 1) between 14 April 2012 and 29 December 2013 based on RS-2 UF data. Note the reduced quality of matching results and missing matches at the calving front between 03 May 2013 and 24 September 2013 due to the long time interval between acquisitions.
Fig. 10 Time series of speed of Kongsbreen between 2010 and 2013 linked to water supply to the bed by melt and rain (positive degree days (°C) and rain events (mm) from weather station in Ny-Ålesund). Speed at two points of Kongsbreen (m d⁻¹) from RS-2 UF and RS-2 W (see inset).
Fig. 11 Selected calving front positions of Kongsbreen between December 2007 and December 2013. Background image RS-2 UF of 29 December 2013.
Fig. 12 Frontal ablation of Kongsbreen between 14 April 2012 and 29 December 2013 and components, ice flux and terminus position changes. Note that the ice flux could not be estimated between May and September 2013 and therefore set to 0.0 Gt a^{-1} as the quality of the speed map was not sufficient to extract glacier speed along the fluxgate.