Dear Prof. Philip Marsh, Editor,

We present here a revised version of our manuscript tc-2015-16 entitled “Microscale variability of snow depth using U.A.S. technology” by C. De Michele et al. We fully welcomed the comments by both the reviewers, and we modified our manuscript accordingly. In particular:

1. We changed the title as kindly asked by Reviewer 2 (henceforth R2). The new title is “Using drones to map snow depth variability at cm resolution: an evaluation at peak accumulation”. We think that this new version is more informative. As asked by R2, we now specify that the April survey was run at peak accumulation;

2. The abstract has been enlarged, by including a more explicit statement about the purposes of this investigation. Moreover, results description has been widened in view of the new elaborations that we report in the revised version (see point 6);

3. In the Introduction, we included a new paragraph that specifically deals with UAS systems. This paragraph aims at describing in a clearer way how these systems can make a contribution to the problem that we discuss here (as asked by Reviewer 1, henceforth R1). Moreover, we also added a clearer statement of the purposes and the results of this investigation;

4. In the Section dealing with the description of the study area (Section 2), we removed the explicit reference to the criteria that we followed to choose the location of the survey. The main reason is that these do not provide any benefit to the discussions, being merely logistical. These modifications were motivated by comments by both the reviewers;

5. The Methods section (former Section 3) has been deeply reorganized: we added more technical details about the SwingletCAM system and the Agisoft Photoscan software (asked by R2), as well as about the camera that we used (asked by R1). We included a new Section (current section 3.2) that specifically deals with DSMs production (this was placed in the Results section in the previous version of the manuscript), and we reorganized the former Section 3.2 (now section 3.3, Point data collection). In particular, we now motivate the comparison between point measurements and UAS-based estimation of snow depth in a better way, and we include here a number of details about the snow pit measurements, too. Moreover, we also discuss in a clearer way why we chose random locations for manual measurements (as asked by R1). Note that we now provide additional details about the way we used to retrieve the positions of point measurements of snow depth. These were obtained by total station theodolite observations referred to GPS baselines that were surveyed by static approach (40 minutes sessions). The accuracy of the obtained coordinates is of the order of 2-3 cm (i.e., comparable with the spatial resolution of the DSM at the maximum resolution). This is the reason why we operated a point-by-point comparison with the UAS-based estimations. More details on this point were asked by R2. In addition, a new Subsection (3.4) has been introduced. Within this subsection, we reorganized the discussion about the role of survey resolution, as also the comparison between UAS-based volume estimation and those obtained from interpolation. In this context, as asked by R1, we motivate in a better way our choice about the interpolation techniques we used. Moreover, we included here a new set of calculations that aims at evaluating how some basic snow depth statistics (mean, standard deviation, CV, maximum and minimum values) vary with the resolution of the survey. To do this, we recursively resampled the original DSM (at 5 cm) by progressively doubling cell size. In this way, we are able to understand how these statistics vary over different orders of magnitude of raster resolution (from 5 cm to 100 m). This can provide some important information to understand whether a finer-than-usual spatial resolution provides an added value for hydrological applications. Such an application has been also motivated by the comments by R2. A number of new Figures were introduced that deal with this experiment. See the revised version of the manuscript for details on this point;
6. In the Results Section, we operated major revisions. The first Subsection now explicitly deals with DSMs evaluation. In this subsection, we added a new Figure that shows a comparison between UAS-based 10 m contours and those reported by the topographic map we use as a comparison over the entire study area. Moreover, we also added a quantitative evaluation by comparing the Autumn DSM with the 20m x 20m DSM of the Lombardia Regional Authority, which is based on the digitalization of this 1:10000 map. The statistics of the differences are coherent with the accuracy of this DSM (i.e. with a standard deviation of 1.2 m). This evaluation was suggested by R2. A second Subsection deals with the comparison between UAS-based and point estimations of snow depth. In this context, we now specify in a clearer way that this is a preliminary evaluation of the performances of the device in retrieving point values of snow depth. We also added a paragraph where we compare these performances with those obtained by a well-documented alternative technique (laser scanner). This was asked by R1. As a third subsection, we completely rewrote the discussion of results in terms of snow depth statistics, by adding new tests, and by revising the comparison between UAS-based and interpolation-based estimations of snow volume as well as the effect of pixel size on snow depth statistics;

7. Conclusions were enriched with the results of the new tests, while a separated Subsection has being devoted to future developments. In this new section, we also speculate about the effects different snow depth and/or different vegetation can have on the survey, as suggested by R1.

As asked by R2, figures were enlarged and rearranged. Please find additional details in the revised version of the manuscript. We also refer to our answers to reviewers in the open discussion for any additional detail.
Interactive comment on “Microscale variability of snow depth using U.A.S. technology” by C. De Michele et al.

C. De Michele et al.
francesco.avanzi@mail.polimi.it

Received and published: 28 May 2015

Dear Anonymous Referee 1,

We would like to thank you for the review and useful comments. We will consider them carefully while revising the manuscript, and we will try to address them at our best. Here you have a point-by-point reply to your indications and questions. Please find in italics your comments, and in plain text the answers.

General Comments

This is an interesting paper that in essence seeks to compare a photogrammetric approach to estimating deep snow depth (average of 1.80m) from a UAS platform with ground measurements. The authors explore comparisons between a DSM created with industry-grade software using stereoscopy and in situ measurements of snow depth, albeit at the deeper snow depth range. They also compare DSM snow depth and estimated snow volumes from the UAS with estimates from interpolated snow depth and volume map data. In my view, this aspect is un-necessary and does not add any substance to the paper. This is supported by the fact that they do not really comment on the volume estimates in the conclusion. Suggest it is removed form the analysis as it is quite weak.

We thank you for this comment. Probably, we were not enough clear about the reasons why we compare the DSM with the estimations of distributed snow depth one would obtain from simple interpolation techniques, so we will be much clearer in the revised version of the manuscript. We are aware that such a comparison is not the main focus of the paper, as this is testing a U.A.S. system in measuring the microscale variability of snow depth. However, we opted for including it, since the interpolation of sparse point measurements has been the traditional way used for a long time to get a distributed evaluation of SWE for operational applications. As an example, the SNOTEL network in western US was set-up in order to determine near-real time scenarios of water availability in that area by measuring this quantity at an increasing set of points. In this perspective, one could argue that using a photogrammetric technique with such a high spatial resolution to retrieve this kind of information is too time consuming, and that this does not add any clear added value to the final result. This is probably one of the reasons why SWE estimations have been mainly run at the point scale until now. However, we show here that 1) getting direct distributed estimations of snow depth can be cheap, fast and relatively safe, by using a U.A.S. system, and that the interpolation of snow depth at random point values can lead to a non-negligible difference with respect to the DSM one gets from U.A.S. It is worth noting that the mutual distances between these random points are very reduced with respect to the usual distances between gauged sites in operational applications. Starting from snow depth, SWE can be derived by measuring (or modeling) bulk snow density at the same location. We will improve the discussion on this point in the revised version of the manuscript.
A significant question is that the application is for a one-site, one day estimate when things go well. But what is the evidence for its applicability under different landscape and snow conditions? The authors state that the site topography is homogeneous but were there trees or low-stand vegetation types present? And even if there were not, what would the implications be if they were?

We will add some considerations about these points in the revised version of our manuscript. On the one hand, an exhaustive assessment of the variability of sensor (and support) performances with landscape, snow conditions, vegetation and topography heterogeneity is probably beyond the scopes of this contribution, as this would require a much wider set of field surveys. On the other hand, we agree with you that speculating about the implications of these factors on the performances is important, and worth including. As far as we were able to see, the quantitative use of U.A.S. systems on snow has not been documented exhaustively in the literature, and this has some intrinsic complications (e.g., the difficulty in ortophotos composition due to a general reduction in topographic features during snow presence on the ground). As a consequence, we think that documenting the feasibility of such a survey, and that the expected accuracy of this survey is rather high, will contribute to trigger new studies that will investigate the important points you raised.

Overall, the paper is quite well written although the grammar is a little awkward in several places and needs to be proof-read further.

We will revise the grammar and the use of English.

Specific Comments

P1050 The authors need to better describe the distinction between UAS as a platform and how it can make a contribution to this application, as opposed to the instruments that are described in the introduction. What previous stereoscopy approaches have been adopted elsewhere and why have they been successful/unsuccessful? This will better make the case for the UAS approach since this is where the novelty of the paper lies; the case needs to be made more convincingly from the start.

We completely agree with you on this point. As you have correctly said, U.A.S. are a novel platform that could allow to run traditional surveys (such as photogrammetry, or even airborne laser scanning) in a semi-automatic, accurate, repeatable, and cheap way. This is the main reason why they could represent in the future a very interesting alternative to both point and “manned” remote sensing techniques. We will rethink some parts of the Introduction to stress this point in a better way.

P1051 line 21– why was 2000 m.a.s.l. selected as the threshold? How sensitive is this to the success of the project?

This threshold plays no role in driving the success of the project. While designing this field campaign, we chose the Malghera Lake area as a suitable location since this area is likely to be covered by seasonal snow in April, due to its high elevation. This is the meaning of lines 20-21 (page 1051). However, since this is just a secondary information, we will remove this numerical specification from the revised version since it is useless and can cause confusion in the reader.

P1051 L23 what does “interested by seasonal snow” mean? Do you mean “covered by seasonal snow”?

Yes, exactly. We will consolidate this in the revised version.

P1052 L12 what are “hard climate conditions”?

A U.A.S. is usually a light and quite fragile device. Therefore, it was our intention to denote as “hard climate conditions” those conditions that would endanger the use of these supports (e.g., strong wind conditions). We will improve this in the revised version of the manuscript.

P1052 L27 Why was the GSD set to 4.5 cm?

We chose 4.5 cm as GSD since this value allowed a survey at a flying elevation of
around 130 m, which represents a good safety condition for the U.A.S. device.

P1052 Section 3.1 What is the camera wavelength and bandwidth (e.g. full width at half maximum)? What is the signal to noise ratio of the instrument and what is the sensitivity of the detectors?

We operated the survey using an optical compact camera (Canon Ixus). Consequently, the survey has been made in the visible spectrum. The camera uses a bandpass filter for the three colors RGB. These are placed ahead of the CMOS according to the Bayer filter (50)

P1053 Section 3.2. The authors make some interesting observations regarding number of points needed to evaluate the performance of a technique. Interestingly, work by Snedecor and Cochrane (1969) [Snedecor, G. W., and W. G. Cochran, 1967: Statistical Methods. 6th ed. Iowa State University Press, 593 pp.] introduces such methods and work we did in 2005 attempted to leverage this knowledge (Chang et al. 2005 J. Hydromet. Vol. 6: 20-33.). It would be interesting to see how this might fit with the authors’ study.

We thank you for this suggestion. We will consider this approach in the revision of our manuscript.

P1053 Section 3.2. Several studies have explored spatial variability of snow at the landscape scale (much of the Arctic and Sub-Arctic snow research frames spatial domains at the landscape scale) rather than as a simple random field of variation. This is because there are inherent spatial scales of variation of snow distribution caused by those controlling factors that the authors describe in section 1. Even in Alpine areas, there is predictability of snow accumulation and redistribution that could have informed the sampling design. Can the authors explain why they adopted the approach that they did for spatial sampling?

We agree with you that the investigation of the variability of snow depth at different spa-

tial scales is a well-documented field of research. However, as Grünewald and Lehn-
ing (2014, citation in the text) state, representative snow depth point values are rather randomly distributed and cannot be identified a priori. A similar idea drove our sampling technique, i.e. the investigation of the performances of a U.A.S. system against measurements at random locations. In this context, random is a key word. In fact, including any additional information could artificially influence the evaluation of the performances, and could have raised a number of objections. Here, we consider the worst case (i.e., no information available). We will include a mention to this issue, and a clearer statement of sampling hypotheses, in the new version of the manuscript.

P1053 l15-28. Here or in the Results section, the authors should include details on how accurate (what the errors were) in these previous studies so that their work can be contextualized. Their study is in a mountainous basin that is not glacierized whilst at least one was in a glacierized basin (Machguth et al. 2006).

We agree with your point of view. We will try to include a wider context about survey uncertainty with respect to the existing literature.

P1054 Section 3.3 The authors describe several methods for spatial interpolation that have been used elsewhere but provide no rationale for their own selected methods – why were these three methods chosen that essentially incorporate spatial weighting rather than combined effects such as elevation derivatives (slope, aspect) and vegetation type?

In the revised version of the manuscript, we will include a clearer motivation of our choice. What we would like to compare are the DSM by a U.A.S. and the estimations of snow depth by simple interpolation techniques. As already said, the main reason is that the interpolation of sparse point measurements has been the traditional way used for a long time to get a distributed evaluation of SWE for operational applications. In doing this, simple techniques are straightforward to be interpreted, and do not add additional modeling uncertainty to the problem, apart from the type of spatial weighting
considered. Probably, they also represent the most used techniques in spatialization problems. We will be much clearer on this point in the revised version. Vegetation type is not a reliable predictor here since this is very sparse and of reduced height over the entire study area.

P1057 Section 4.3 I agree with the authors that with so few sampling points, it is difficult to make widespread generalizations about the data across all ranges, even though the data seem to agree quite well at the small upper range of snow depths encountered. The sampling points on the ground average 1.80 m with a -7.3 cm bias relative to the DSM data. But how applicable are these at low snow depths less than 1.4 m, for example, which were not sampled in the field? Can the authors provide some further insight across a wider range of depths as to how this method might perform?

We agree with you that assessing the vertical resolution of snow depth measurements which are outside our observation range is problematic. As we state, additional investigations are necessary to assess U.A.S. performances in case of, e.g., shallow or patchy snow cover conditions. However, please consider that U.A.S. is a novel support to run a well-established survey (i.e., photogrammetry). This should improve the reliability of the measurements we took. We will try to elaborate on this point in the revised manuscript.

P1058 L16. Why do the authors state 20cm as a favourable resolution for snow depth mapping? Why not 25 or larger? This seem arbitrary. Did they test coarser spatial resolutions? More evidence is needed for this assertion.

We will try to clarify this point in the revised version of the manuscript. We would like to point out that, in the current version of the manuscript, 20 cm is mentioned as a good trade-off, namely as an acceptable compromise between the push for increasing resolution (i.e., considering smaller pixels) and the amount of data to be considered in survey processing. What we noted is that an increase in resolution beyond 20 cm (say, 10 or 5 cm) does not seem to provide any added value to the survey, in this case study. In other words, 20 cm seems to be a good upper boundary of photogrammetric resolution in similar situations. We will be clearer on this point, thank you.

P1058 Section 4.5 Since the average in situ measured snow depths have a -7.3 cm bias, it is not surprising that the interpolated data also underestimate snow depth (and volume). The authors should include the cross validation data from their interpolations since this will provide insight into the precision of the interpolation. This section, while interesting, seems a little un-necessary since spatial interpolation methods that use spatial adjacency only, will always be inaccurate unless there is a dense network of measurement points. It would be very interesting, perhaps to compare the difference snow map with a more physically-based snow model that is better capable of predicting snow accumulation in complex terrain (e.g. CRHM or SnowTran3D).

We refer to previous replies on the same point for a more exhaustive discussion. We appreciated your suggestion about possible cross validation. However, this is problematic given the paucity of points. On the other hand, using a physically-based model in this context is difficult given the absence of input data availability in the area.

P1060 L8. Assertion (3) is not new – the interpolation methods are only biased because the very few snow depth measurements (n=12) have a low bias. Furthermore snow volume does not equate to SWE as implied.

We will rephrase this statement. In particular, we will mention that the evaluation of snow depth volume using classical interpolation techniques of randomly chosen point values leads to biased results, that depend on the bias in point values, when compared to U.A.S. results. Clearly, SWE cannot be assumed equal to snow depth volume, but it can be derived from this last information, once snow density is known.
Interactive comment on “Microscale variability of snow depth using U.A.S. technology” by C. De Michele et al.

C. De Michele et al.
francesco.avanzi@mail.polimi.it

Received and published: 27 June 2015

Dear Prof. Steven R. Fassnacht,

We appreciated your comments on the manuscript. In particular, we agree with you that more details are needed to justify some choices. Please find here point-by-point answers to your questions. Please refer to the revised version of the manuscript we are going to submit for details.

Overall this paper has a lot of potential. It can make an important contribution to illustrate how inexpensive (much cheaper than lidar) methods can be used to estimate snow depth remotely at fine resolution (sub metre), possibly over large extents; this paper shows a small extent but there seem to be no limitations to going to much larger domains. This is especially true in remote and/or inaccessible areas. This type of data collection system has great promise for snow and ice mapping, building upon work other earth science applications.

We agree with you that U.A.S. systems (also known as drones) can be a potential alternative to existing techniques to run distributed surveys in many fields of geosciences. In particular, their capability to run semi-automated, cheap and quick surveys of a study area allows for a repeatable monitoring of many natural phenomena.

However, there are some substantial problems. Crucial components are not explained or poorly described and the comparison of UAS to manual measurements is too simple. The paper needs to be rewritten and re-focused. It reads like a technical note, as the comparison dataset is very sparse (1 point per 160m or 25,000km2). The authors should consider evaluating the spatial patterns of snow distribution, especially since this dataset is much finer than other similar extent dataset, such as those collected using airborne or terrestrial lidar (e.g., Lopez-Moreno et al., 2015; Hydrol. Proc.; doi:10.1002/hyp.10245). A dataset covering 300,000 m2 (or 500m x 500m) does not exist at this resolution (5cm) in the literature. Pattern analysis would illustrate its utility. The authors suggest the importance of such fine resolution, and while hydrologically this may not be crucial, it is relevant in the context of sampling (e.g., Lopez-Moreno et al., 2013; Advances in Water Resources; doi, 10.1016/j.advwatres.2012.08.010). Contrary to what the authors say on page 1053, line 15-17, there is literature on how many points are need to be representative. The author should consider the NASA Cold Lands Processes Experiment (see Elder et al., 2009; J. Hydrometeorology).

In the revised version of the manuscript, we provide a wider context for this work within the existent scientific literature in order to avoid this to read as a technical note, only. As an example, we reshaped the Methods section to add more details about the UAS platform, the processing technique and the comparison with point data. The Results section have been enlarged, while results implications are discussed in a wider way within existing literature. In the Introduction, we now report in a clearer way that our
purposes are twofold: on the one hand, we aim to evaluate if these devices can be used to return a quantitative estimation of snow depth over a small area using photogrammetry (hence an evaluation using point data). On the other hand, we also aim to assess whether a finer-than-usual spatial resolution provides a benefit for hydrological applications. As visible from Table 3 (TCD version of the manuscript), a very fine resolution with respect to usual distances between data point seems to have a relevant influence on hydrological evaluations (since the volume of snow one would obtain from interpolation of point measurements can be severely biased with respect to the UAS-based volume).

However, we agree with you that more evidences are needed on this point. For this purpose, we included an additional test to existing Tables 2 and 3, that shows how maps with an increasing cell size (obtained by resampling the original one at 5 cm) keeps only a small fraction of the original spatial variability of snow depth. We also quantify this loss of information by making the differences between the original snow depth map and the one sampled at 50 and at 100 m. Moreover, we also show how some basic statistics (mean snow depth, standard deviation, CV, maximum and minimum values) change with increasing spatial resolution. As you correctly suggested, we justify this test by considering the fact that a database with a so fine spatial resolution does not exist in the literature, to our knowledge. As a consequence, the investigation of statistical properties of snow depth at a sub-metric resolution is an important step forward that can be reached.

We agree with you that, in the literature, it is nowadays known how to determine the number of points that would theoretically be needed to get an estimation of mean snow depth at a point within a certain error range (see references in the text as examples). On the contrary, to our knowledge, no specific rule or common practice exists to determine the minimum number of manual snow depth measurements, over a given area, needed to evaluate whether a given remote sensed technique returns satisfactory performances or not. In the revised version of the manuscript, we now stress the fact that the evaluation we run here is still preliminary, and that a more exhaustive evaluation is needed. In the revised version of the manuscript, we added a preliminary comparison between the precision of this technique with respect to existing methods (taking laser scanner as an example given the abundancy of literature on this topic).

The biggest problem is likely the comparison to the manual measurements. Only 12 measurements were made for the one date when snow was present. It is not possible to go back in time and collect more data, but this could be a fatal flaw of the paper as it is currently presented. It is stated (p1057, line 10) that there is a “slight difference” between the UAS and manual measurements. There is no mention of the horizontal accuracy of the manual depth measurements. I assume that a GPS unit was used to determine the coordinates of the manual measurement. If so or if not, this need to be explained. I highly doubt that the manual measurements are at the same 5-cm resolution UAS pixel. See Lopez-Moreno et al. (2011; The Cryosphere; doi:10.5194/tc-5-617-2011) for 1-m resolution variability and Fassnacht et al. (2009; Ecol. Complex.; doi:10.1016/j.ecocom.2009.05.003) for crystal to metre scale resolution variability.

We agree with you that more details were needed on this point. As we have already said before, we are now much clearer on the fact that the evaluation we run here is still preliminary, and that a more exhaustive evaluation is needed. However, note that the coordinates of the points were taken by total station theodolite observations referred to GPS baselines that were surveyed by static approach (40 minutes sessions). The accuracy of the obtained coordinates is of the order of 2-3 cm (i.e., comparable with the spatial resolution of the DSM at the maximum resolution). This allows for a direct comparison between UAS-based and probes-based readings of snow depth. We added this specification in the revised version of the manuscript.

The three interpolation maps are not shown, likely since they are too simple and not realistic.

We chose not to report the three interpolation maps in the manuscript for the sake of
brevity. However, the main purpose of these interpolations is to provide an evaluation of snow volume to be compared with the UAS-based estimation. This information is already reported in Table 3.

The swingletCAM system is proprietary (sensefly®) and not explained well. The 3-D locating is mentioned, but with the “georeferencing” present later, its relevance is not stated. We do not all have access to such hardware, so insight would help those who want to build such a system, or justify its rental or purchase. Later the Agisoft software is used to create the Digital Surface Maps (DSMs). While this is being used by many, the specifics should be explained.

We added some additional details about the swingletCAM system and the Agisoft software in the revised version of the manuscript.

The contour intervals (10-m), presented from the “local regional administration,” are too coarse for the graphical comparison presented in the paper. It is stated on page 1056, line 21 that the UAS DSM is in agreement with the “local regional administration.” While those figures are too small to truly compare (make them bigger), they do not appear to be in agreement. I suggest that a digital elevation model (DEM) for the area (e.g., SRTM) should be used to compare the “agreement” quantitatively. This may require transformation of one of the datasets (UAS DSM or SRTM DEM).

We added a more exhaustive validation of the autumn DSM. In particular, we added a new picture where U.A.S.-based contours are directly superimposed on those reported in the topographic map (see Fig. 6 in the revised manuscript). These show a very good agreement. However, we agree with you that a more effective evaluation is needed. For this purpose, we have also compared this DSM with the 20m x 20m DSM of the Lombardia Region. The statistics of the differences are coherent with the accuracy of this DSM (i.e. with a standard deviation of 1.2 m). We also enlarged all the pictures to guarantee a clearer evaluation.

In places the writing is quite choppy. For example, the words “automatic” and “automated” should be replaced by “automated.” Since the authors may not be native English speakers, I recommend that a native English speaker review/proof read the paper before resubmission. There are numerous other examples throughout that I will not highlight.

We revised our use of English and grammar.

Specific comments
We took care of your specific comments while revising the manuscript. We provide here additional answers to some of your comments (when needed). However, we are willing to add additional details about those points that are not reported here, if this is needed.

I don’t like the title. By microscale the authors mean centimetre scale. Also, U.A.S. is not a known shortform - The second survey is at the end of accumulation. This can be misleading, Perhaps say that it is around the time of peak accumulation

We modified the title. The new title we are going to propose is “Using drones to map snow depth variability at cm resolution: an evaluation at peak accumulation”.

p1051, l1: is it truly bare soil?
We changed this statement. In the current version of the manuscript, we specify that the autumn DSM is the DSM of the ground. Very sparse vegetation and rocks characterize it.

p1051, l20: what is the basis for the “criteria?”
We removed the explicit inclusions of these criteria, since they can cause confusion to the Reader. Those points represent some of the features of the study area that allowed us to run this survey. In particular, being at a quite high elevation, it is usually covered by seasonal snow in April, while its easy accessibility allowed us to reach it during both the surveys. We did not report explicitly these criteria in the current version of the
manuscript since they are merely logistic.

p1058. l1: at what scale are the “micro-topographic differences?”

We consider as “micro-topographic” resolution the one we use to map snow depth (i.e., from 5 to 20 cm).

p1059. l4: “snow density ... measured” - provide more information about this.

In the revised version of the manuscript, we added a specific paragraph in the Methods dealing with the details of snow density measurements. On April, 11th, i.e. the same day of the April survey, a snow pit was excavated, and a snow density profile was measured through gravimetry (using a cylindrical samples holder, 15 cm long and with a 7.5 cm diameter). Measurements were taken at around 20 cm intervals along 210 cm of snow depth at that point. Although one measurement for the entire area could look limiting, note that bulk snow density has usually a reduced variability in space (at this spatial extent), since it changes mainly according to the season, or climate (see Mizukami and Perica 2008, Jonas et al. 2009, McCreight and Small 2014 or De Michele et al. 2013, citation in the text).

Table 1: can’t directly compare the manual measurement to UAS due to error in locating the manual measurements and their support (see Hood and Hayashi, 2008; The Cryosphere).

As already said, the coordinates of the points were taken by total station theodolite observations referred to GPS baselines that were surveyed by static approach (40 minutes sessions). The accuracy of the obtained coordinates is of the order of 2-3 cm (i.e., comparable with the spatial resolution of the DSM at the maximum resolution). This allows for a direct comparison between UAS-based and probes-based readings of snow depth.

Table 2: how were these different resolutions of UAS based data derived?

As we now specify in the text, the three UAS-based maps were obtained from the cloud of points obtained from the UAS. Note that, as we now specify in the text, the main novelty of UAS system resides in the features of the support (especially, self-conduction and low cost), while the method use to retrieve points coordinates (e.g., photogrammetry) are usually rather traditional.

References:

Interactive comment on The Cryosphere Discuss., 9, 1047, 2015.
Using drones to map snow depth variability at cm resolution: an evaluation at peak accumulation

C. De Michele¹, F. Avanzi¹, D. Passoni¹, R. Barzaghi¹, L. Pinto¹, P. Dosso², A. Ghezzi¹, R. Gianatti³, and G. Della Vedova³

¹Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milano
²Studio di Ingegneria Terradat, Paderno Dugnano, Italy
³a2a Group, Grosio, Italy

Correspondence to: C. De Michele (carlo.demichele@polimi.it)

Abstract.

We investigate the snow depth distribution at the end of the accumulation season over a small alpine area (∼3·10⁵ m²) using photogrammetry-based surveys at cm resolution with Unmanned Aerial Systems (U.A.S., also known as drones). Although these systems are growing in popularity as inexpensive alternatives to existing techniques within the field of remote sensing, the assessment of their performances in mapping snow depth distribution is still an open issue. We have designed two field campaigns during the 2013/2014 snow season. In the first survey, run before the beginning of the accumulation season, the digital elevation model of the ground has been obtained. The second survey, at peak accumulation, allowed to estimate the snow depth distribution as difference with respect to the previous aerial survey. We collected 12 manual measurements of snow depth at random positions to run a preliminary evaluation of U.A.S.-based snow depth estimations. In addition, we have explored how some basic snow depth statistics (e.g., mean, standard deviation, minima and maxima) change with sampling resolution (from 5 cm up to ∼100 m). The spatial integration of U.A.S. snow depth measurements allowed to estimate the snow volume accumulated over the area, that has been compared with the estimations by traditional interpolation of probes measurements. Results show that using U.A.S. seems to provide a fairly accurate estimation of point snow depth values (the average difference with reference to manual measurements is -7.3 cm). Moreover, we observe that, for our case study, snow depth standard deviation (hence coefficient of variation) increases with decreasing sampling distances, although it stabilizes for sampling distances smaller than 1 m. Interpolations of snow probe data return average differences in snow volume estimation, with respect to the one obtained through the U.A.S. system, equal to ∼21%.
1 Introduction

Seasonal snow accumulation and ablation dynamics are highly variable in space and time (Elder et al., 1991; Fassnacht et al., 2009; Grünewald et al., 2010; Mott et al., 2011; Grünewald et al., 2013; Scipión et al., 2013; Winstral et al., 2013). This variability plays a key role, among others, in avalanche prediction (Schweizer et al., 2008), in the routing of melt water in snowpacks (Katsushima et al., 2013; Avanzi et al., 2014; Hirashima et al., 2014), in melt-runoff modeling (Lundquist and Dettinger, 2005), and in the evaluation of snow water equivalent distribution on complex terrains (Bavera et al., 2014).

The principal forcings ruling the spatial heterogeneity in the seasonal snowpack include 1) orographic effects (Lehning et al., 2008; Mott et al., 2014), 2) elevation, that rules the rain-snow transition zone, i.e. the elevation which separates snow- and rain-dominated areas during winter (Marks et al., 2013; Hinckley et al., 2014; Klos et al., 2014), 3) aspect and shadows from surrounding terrain (Hock, 1999; Marsh et al., 2012), which influence the exposure to radiation input from the Sun, hence varying melting rates, 4) wind redistribution (Lehning et al., 2008; Mott and Lehning, 2010), 5) avalanche transport (Lehning and Fierz, 2008; Grünewald et al., 2013) and 6) vegetation (Golding and Swanson, 1986; Ellis et al., 2010; Pomeroy et al., 2012).

The spatial distribution of snow depth and snowpack mass content, in the form of Snow Water Equivalent, SWE, has been widely measured and modeled, both at the local, slope and catchment scale (Grünewald et al., 2010). Modeling techniques include statistical approaches, such as Carroll and Cressie (1996); Elder et al. (1998); Erxleben et al. (2002); Anderton et al. (2004); Molotch et al. (2004); Dressler et al. (2006); López Moreno and Nogués-Bravo (2006); Skaugen (2007); Bavera et al. (2014), and conceptual, or physically-based models, e.g. Lehning et al. (2006, 2008). These works have improved our knowledge about, e.g., the relevance of single forcings in determining the distribution of the snow cover on complex terrains (Anderton et al., 2004). In addition, they provide a useful tool to estimate the impact of future modifications of climate on the Earth system (Bavay et al., 2009, 2013).

However, the run of a model usually needs input data to be available at a fine temporal resolution (say, daily or hourly). This can be obtained by means of automated devices, such as snow pillows (Cox et al., 1978; De Michele et al., 2013), cosmic ray counters (Morin et al., 2012) and ultrasonic depth sensors (Ryan et al., 2008). These devices are usually placed in areas that are believed to be suitable locations for representative measurements at wider scales (i.e., unaffected by local heterogeneities). Nonetheless, their spatial resolution is often sparse, while Grünewald and Lehning (2014) show that, usually, point stations on flat areas tend to overestimate catchment mean snow depth, and that representative cells are usually randomly located, i.e. impossible to be determined \textit{a priori}. These represent important drawbacks of point weather stations in the study of snowpack dynamics (see Rice and Bales (2010); Meromy et al. (2013); Grünewald and Lehning (2014) and references therein). Moreover, such instruments are usually affected by systematic and random errors...
Consequently, increasing interest is nowadays growing around distributed measurements of snow extent, depth and SW E (Dietz et al., 2012), able to substitute, or integrate, point, and usually sparse, measurements of these quantities. Tested techniques include terrestrial or airborne laser scanning (see e.g. Hopkinson et al. (2004); Deems et al. (2006); Prokop et al. (2008); Dadic et al. (2010); Grünewald et al. (2010); Lehning et al. (2011); Hopkinson et al. (2012); Deems et al. (2013); Grünewald et al. (2013); Grünewald and Lehning (2014); Hedrick et al. (2014)), SAR (Synthetic Aperture Radar, Luzi et al. (2009)), aerial photographies (Blöschl and Kirnbauer, 1992; König and Sturm, 1998; Worby et al., 2008), time-lapse photography (Farinotti et al., 2010), optical and micro-waves data from satellite platforms (Parajka and Blöschl, 2008; Dietz et al., 2012). Although these techniques (especially laser scanning) have widely demonstrated to be able to map snow depth variability, survey expenses and the expertise needed to operate them are still relevant issues that hamper their extensive use (Hood and Hayashi, 2010). As for satellite-based data, spatial resolution is a well-known limiting factor. In this perspective, automated, inexpensive and repeatable surveys at a fine spatial resolution (say, a centimetric resolution both in the horizontal and vertical direction) are still an open target of research, that could substantially improve our degree of knowledge of physical processes at the local scale by means of enhanced monitoring capabilities.

Unmanned Aerial Systems (U.A.S., also known as drones) could potentially fulfill all these requirements. These systems provide an inexpensive airborne support for sensors operating at different wavelengths, that can autonomously determine its own position in a 3D reference, reproduce a pre-arranged flight plan, and reconstruct a high-resolution Digital Surface Model (hereinafter, DSM) of a given area (Watts et al., 2012) by setting a suitable (low) flight height over the target (say, ∼100 m). All these features can potentially allow for automated, repeatable, cheap (Colomina and Molina, 2014) and low-risk surveys to be run, even in areas which are inaccessible for many other techniques. Their main novelty resides in the features of the support (especially, self-conduction and low cost), while the method used to retrieve points coordinates (e.g., photogrammetry) are usually rather traditional. Their use is nowadays rapidly increasing (Eisenbeiss, 2009; Watts et al., 2012; Colomina and Molina, 2014). Some examples regard ecology (Dunford et al., 2009; Koh and Wich, 2012), coastal engineering (Delacourt et al., 2009), geomorphological mapping (Lejot et al., 2007; Hugenholtz et al., 2013) or dust detection (Di Mauro et al., 2015). See Colomina and Molina (2014) for an exhaustive review. In optical surveys, they usually adopt compact digital cameras, due to the limited payload (say ∼10^2 g). Nonetheless, these are affected by higher deformations as compared with those of photogrammetric calibrated cameras (Pollefeys et al., 1999; Remondino, 2006; Stretcha et al., 2010; Sona et al., 2014).

Here, we investigate the possibility of using drones to measure snow depth patterns at the end of the accumulation season within a small mountainous basin, using a centimetric resolution. This
attempt addresses the following objectives: 1) to evaluate if these devices can be used to return a quantitative estimation of snow depth over a small area using photogrammetry, and 2) to investigate some basic statistical properties of snow distribution at varying spatial resolution (from 5 cm up to \(\sim 100 \) m). 5 cm, as well as 10 or 20 cm (i.e., the resolutions we considered in this survey) are very fine with respect to other existing data-sets of snow depth (see López Moreno et al. (2015) as an example), and this can provide useful indications for future surveys using the same devices. In particular, we are interested in assessing whether a finer-than-usual spatial resolution provides an added value for hydrological applications. We chose as a field test the bare plateau around the Malghera lake, within the western Val Grosina valley (around 2300 m a.s.l.), northern Italy. A double airborne survey of this area, before and at the end of the accumulation season, was designed. During the first one, on 26th September 2013, the DSM of the ground has been collected, while during the second one, on 11th April 2014, the same area has been surveyed again to determine the DSM of the snow cover. Then, calculating the vertical differences between the two DSMs (Deems et al., 2013), the spatial distribution of snow depth has been derived, and compared with manual measurements at 12 points. These locations have been randomly chosen. Successively, the snow volume accumulated over the area was determined. Snow depth statistics (i.e., mean, standard deviation, coefficient of variation, minimum and maximum values) have been calculated at different (rescaled) spatial resolutions, and compared to evaluate how they vary across different orders of magnitude (i.e., from 5 cm to 100 m). Moreover, the snow volume estimated by the U.A.S. system has been compared to those provided by classical interpolation techniques (namely arithmetic mean, inverse distance weighting, Thiessen method and kriging) of point measurements. Interpolating spatially sparse measurements is one of the typical techniques used to estimate snow depth (or SWE) for operational applications, hence our interest for a comparison.

2 The study area

The case study is located in the western Val Grosina valley, Lombardy region, northern Italy. It is nearby the Malghera lake, \(\sim 46°20'2'' \) N, \(\sim 10°7'14'' \) E, 2320 m a.s.l. We chose this study area since it is at an elevation that guarantees an adequate snow thickness at the end of the accumulation season. Moreover, it is easily accessible during all the seasons. The approximate extent of the study area is \(30 \cdot 10^4 \) m². In Fig. 1 the location of the study area is given, together with the topographic map of the ground, produced by the local regional administration (Lombardia region). Fig. 1 shows that site topography is relatively homogeneous.
3 Methods

3.1 Design of the surveys

The U.A.S. used in the two surveys is a light-weight fixed wing SwingletCAM system (SenseFly®). It is characterized by a limited weight (∼500 g) and size (wingspan equal to 80 cm). These features make it suitable to perform photogrammetric flights over limited areas (about 1 km²) at a very high spatial resolutions (3-7 cm of Ground Sample Distance - GSD). The device is mainly made by an expanded polypropylene (EPP) foam, a carbon structure and composite parts. The propulsion is electric, with a maximum flight time around 30 minutes. The nominal cruise speed is ∼36 km/h, with a wind resistance up to 25 km/h and a radio link range up to 1 km from the master station on the ground. The SwingletCAM is able to perform pre-planned flights in a fully automated mode, since it continuously analyzes data from the onboard GPS/IMU system. However, the operator can always recover full control of the system. It incorporates a compact camera Canon Ixus 220HS (12 Mp and fixed focal length of 4.0 mm) which can acquire images at a GSD of some cm (depending on flight height). The camera uses a bandpass filter for the three colors RGB. These are placed ahead of the complementary metal–oxide–semiconductor (CMOS) according to a Bayer filter.

In these two field surveys, the GSD was set to 4.5 cm. This is because such a value allows to run a survey at a flying elevation of around 130 m above ground level (the complete range of the height values is between 130 m and 135 m), and this is a good safety condition for this U.A.S. device in a mountain area that is potentially subjected to strong winds. To gain the maximum stereoscopy and to avoid uncovered areas, forward and side overlaps were set to 80%. Following this approach, from six to seven strips were necessary to cover the area of interest.

3.2 DSMs production

For both the surveys, the flight lasted around 15–20 minutes. We report in Fig. 2 the location of camera photos and their overlap for each of the two surveys. In particular, the left panel regards the survey made on September 2013, while the right panel refers to the survey run during April 2014. Colors indicate the number of images covering each area. It is well known that the precision in coordinates estimation increases with an increasing number of images in which a point is present (Remondino and El – Hakim, 2006). In this perspective, most of the study area has been imaged at least by 3 or 4 images. Clearly, the overlap increases at the center of the study area. In that area, points have been imaged by a number of images ≥ 9.

In the survey made on September 26th 2013, the U.A.S. collected a block of 47 images divided in 6 strips. Due to the high image overlap, all the ground points are visible in many images (from 3 to 9). Thirteen pre-signalized Ground Control Points (henceforth, GCPs), measured through GPS rapid static survey, allowed the referencing of the block and the accuracy analyses. The standard deviation
of the three coordinates of GCPs are around 3 cm in the horizontal components, and 5 cm in the vertical one.

In the survey run on April 11th 2014, the U.A.S. collected a block of 84 images divided in 12 strips (6 regular strips as in the autumn survey plus 6 cross strips). Fourteen pre-signalized GCPs, measured through a GPS static survey and theodolite, allowed the referencing of the block. This set of GCPs is different from the one used during the first survey. We chose points that were reasonably distributed over the area, and we referred them to the same reference frame. Based on this survey, GCPs coordinates have been estimated with a standard deviation of about 1 cm.

The blocks of images were processed using the Agisoft Photoscan software. This is a 3D modelling software that enables the exterior orientation of large datasets, by carrying out the image relative orientation, together with the self-calibration, in an arbitrary reference system, which is often obtained using a minimum constraint coming from the approximate orientation provided by the telemetry. Details about the processing procedure can be found in the Photoscan user manual (Agisoft, 2014), as well as at the Agisoft website (http://www.agisoft.com/). Moreover, a plenty of papers are available that describe the use of Photoscan to generate 3D models of surfaces (Verhoeven, 2011; Koutsoudis et al., 2014). Firstly, for each block of images, the position of the camera for each image is determined searching common points on the images. Then the extraction of topographic points (which represent a cloud of points), and the rejection of outliers are made for each survey. The subsequent use of GCPs allows translating and rotating the photogrammetric blocks in a specific reference frame, i.e. ETRF2000. Then, starting from the cloud of points, DSMs at different spatial resolutions (5, 10 and 20 cm) are extracted by generating a polygonal mesh model from the cloud data through interpolation. By making the differences of the two DSMs (at the same spatial resolution), maps of snow depth distribution can be obtained.

3.3 Point data collection

During the April survey, 12 point manual measurements of snow depth were operated using probes. The locations of these measurements have been randomly chosen, but were distributed as much as possible over the study area. Their spatial coordinates were obtained by total station theodolite observations referred to GPS baselines that were surveyed by static approach (40 minutes sessions). The accuracy of the obtained coordinates is of the order of 2-3 cm (i.e., comparable with the spatial resolution of the DSM at the maximum resolution).

We have used these data to run a preliminary evaluation of the performances of the device in retrieving point values of snow depth by comparing the manual and U.A.S.-based estimations of snow depth at the same location. In this way, it is possible to determine the mean and standard deviation of the differences between manual and U.A.S.-based estimations of snow depth. Snow probes have been often used since the beginning of snow field surveys in order to determine snow depth amount at a point (Church, 1933; Elder et al., 2009; López Moreno et al., 2011).
Although they represent the most direct way to measure this quantity, the long time needed to operate these surveys (Deems et al., 2013) have caused their partial replacement with automated devices. A comparison with probe measurements has been often used to assess the performances of alternative techniques to describe snow depth dynamics (Elder et al., 2009; Deems et al., 2013). As examples, Prokop et al. (2008) used 90 bamboo sticks to record snow depth changes and to compare these with measurements from laser scanning and tachimetry over a \(\sim 200 \cdot 200 \) m\(^2\) area, Bavera and De Michele (2009) considered 170 point snow depth measurements to validate snow distribution estimations at a basin scale (area \(325 \) km\(^2\), snow cover interesting \(2/3 \) of the total surface), while Gutmann et al. (2012) and Nievinski and Larson (2014) used manual measurements from either 4 or 1 snow probes respectively to evaluate GPS-based estimations of snow depth. In the literature, it is known how to determine the number of points that would theoretically be needed to get an estimation of mean snow depth within a certain error range (see Chang et al. (2005); López Moreno et al. (2011) as examples). On the contrary, no specific rule or common practice exists to determine the minimum number of manual snow depth measurements, over a given area, needed to evaluate whether a given remote sensed technique returns satisfactory performances or not. Although this amount of points allows for a preliminary evaluation of the performances, more data could help to assess the performances of this technique in a more extensive way.

Several studies have demonstrated that snow depth is somehow spatially correlated at short distances (López Moreno et al., 2011), and that weather, climatic and topographic factors can drive snow depth variability at different spatial scales (see the Introduction or the papers by Grünewald et al. (2010); López Moreno et al. (2013); Mott et al. (2014); López Moreno et al. (2015) as examples). However, we opted for a random sampling technique to avoid any external information influencing artificially the evaluation of the performances. Here, we consider the worst case (i.e., no information available).

On the same day, a snow pit was excavated, and a snow density profile was measured through gravimetry (using a cylindrical sample holder, 15 cm long and with a 7.5 cm diameter). Measurements were taken at \(\sim 20 \) cm intervals along 210 cm of snow depth at that point. Density values spanned between 330 kg/m\(^3\) and 570 kg/m\(^3\) (mean value \(\sim 450 \) kg/m\(^3\)).

3.4 Spatial sampling and the estimation of snow depth statistics and volume

To assess how spatial sampling affects the retrieval of snow depth at peak accumulation, we consider three different tests as follows.

As a first step, we estimated mean snow depth, minimum and maximum values, and total snow depth volume using the three snow depth maps we obtained directly from the survey cloud of points (i.e., maps at 5, 10 and 20 cm resolutions). The aim of this first experiment is to determine if it is possible to find a trade-off between increasing spatial resolution (i.e., considering smaller pixels) and the amount of significant information retrieved from the survey.
As a second step, we repeatedly resampled the snow depth map using an increasing cell size, starting from the map at 5 cm resolution. To do this, we recursively aggregated cells by progressively doubling cell size, and estimating snow depth for each new cell using the mean of the snow depth of the aggregated cells. Consequently, we produced estimated snow depth distribution at the following cell sizes: 5 cm (the original one), 10 cm, 20 cm, 40 cm, 80 cm, 160 cm, 320 cm, 640 cm, 1280 cm, 2560 cm, 5120 cm, 10240 cm. Missing values were disregarded. In this way, it was possible to calculate mean snow depth (µ), its standard deviation (σ), the coefficient of variation (CV) and minimum(maximum) value within each of these maps. The main purpose of this calculation is to assess how snow depth variability evolves with increasing/decreasing cell size.

As a third step, we compare the estimates of snow volume by some simple spatial interpolation techniques of the 12 snow probes data with that obtained using the U.A.S. system. Spatial interpolation techniques are methods used in the literature to produce continuous maps of attributes starting from some point values. These methods have been widely used in snow hydrology operational applications to produce maps of snow depth variability (López Moreno and Nogués-Bravo, 2006) starting from point values of the same variable. These techniques include, among others, 1) the Inverse Distance Weighting method (IDW), that calculates the attribute at a given location as a function of the distance between that point and the locations where known values are given (Erxleben et al., 2002; Fassnacht et al., 2003; López Moreno and Nogués-Bravo, 2006; Bavera et al., 2014), 2) Thiessen method, that associates the data at a given location to a certain subset of points close to it (Elder et al., 1991), 3) Kriging, which estimates the unknown values by previously estimating (or assigning) a certain law of variation of the variable in space (the so-called variogram, Carroll and Cressie, 1996; Balk and Elder, 2000; Erxleben et al., 2002; López Moreno and Nogués-Bravo, 2006), 4) Cokriging, that adds to the variogram additional predictors, such as elevation or aspect (López Moreno and Nogués-Bravo, 2006), 5) Cokriging of the residuals (Erxleben et al., 2002), 6) Spline, that estimates unknown values by using a function that minimizes surface curvature (López Moreno and Nogués-Bravo, 2006), and 7) TIN, i.e. Triangular Irregular Networks (Marsh et al., 2012). Moreover, global methods such as regression-tree models, multivariate statistical analysis or linear models have been also applied (Erxleben et al., 2002; Fassnacht et al., 2003; Anderton et al., 2004; Dressler et al., 2006; López Moreno and Nogués-Bravo, 2006; Bavera et al., 2014), sometimes combined with remote sensed images (such as in Harshburger et al., 2010). The techniques we consider here are inverse distance weighting, Thiessen method, and ordinary Kriging. In addition, we will consider also the arithmetic mean of snow depth measured at probes. We chose these techniques since they are straightforward to be interpreted. Moreover, they also represent probably the most used techniques in spatialization problems. The application of more complex techniques (e.g., cokriging) is also hampered by the paucity of ground truth data collected.
4 Results and discussion

4.1 DSMs evaluation

We report in Figures 3 and 4 the orthophotos for the autumn and the spring survey, respectively. Figure 5, panels (a) and (b), describes the related DSMs, both characterized by a pixel size of 5 cm. Red lines depict contour lines (10 m interval).

The autumn DSM (Fig. 5 panel (a)) shows a good coherence with the topographic map, produced by the regional administration, and reported as background. For example, rivers and Malghera Lake outlet are correctly located. This consideration holds from the quantitative point of view too, since contour lines of the topographic map (in black) and those of DSM (in red) are in agreement. A more effective comparison is reported in Figure 6, where U.A.S.-based contours (in red) are directly superimposed to the contours of the topographic map. This comparison shows that the agreement increases with steeper terrains. This DSM has been also compared with the 20m × 20m DSM of the Lombardia Regional Authority, which is based on the digitalization of this 1:10000 map. The statistics of the differences are coherent with the accuracy of this DSM (i.e. a standard deviation of 1.2 m).

As for the spring survey (Fig. 4 and Fig. 5 panel b), a comparison with the topographic map is not straightforward, because of snow depth coverage. Nevertheless, rivers and lake outlet seems to have been correctly positioned, since they correspond to clear depressions in the DSM. The snow depth surface on this area is interested by patchy coverage of sand dust transported by wind storms. This is visible as brown areas in the orthophoto (Fig. 4), and has been of great help in referencing the images of the spring survey, providing common points on photographs. Clearly, the associated DSM shows contour lines which are different from those obtained during the September survey. This is an effect of snow depth presence on the ground, that causes a slight reduction in topography irregularities, too.

4.2 Snow depth map and point evaluation

Figure 7 reports a map of snow depth distribution over the study area (at 5 cm resolution). Different colors indicate different values of snow thickness (see the legend scale reported in the figure). Black dots indicate the location of the 12 manual measurements.

Snow depth shows a remarkable micro-topographic variability over the considered area (i.e., at distances comparable with maps resolution), although this is rather limited in extension (around 300 000 m2), and characterized by bare soil and/or scarce vegetation. Most of the central area is characterized by an alternation of low and high values of snow thickness, that would be completely missed by sampling at probe positions, only. Clusters of high values of snow depth correspond to the location of rivers, or depressions in micro-topography. On the contrary, low snow depths are observed on topographic local maxima. Legend scale shows that micro-topographic differences can
be equal to $\sim 2 - 3$ m. This illustrates the relevant variation of accumulation dynamics of snow depth, and the scarce representativeness of point measurements (Grünewald and Lehning, 2014).

We report in Table I a comparison between manual (H_M) and U.A.S. based ($H_{U.A.S.}$) snow depth measurements. Manual measurements are associated with a standard resolution of ± 1 cm. The average difference between measurements is equal to -7.3 cm, with an associated standard deviation of 12.8 cm. This result shows that drones seem able to locally estimate the snow depth values with a precision of ~ 10 cm (at least at probe positions). Part of the difference could be explained by slight differences (at centimetric scale) in the position of manual measurements and U.A.S. estimates, and instrumental resolutions. Nonetheless, this precision is comparable with the order of magnitude of the precision (instrumental resolution and noise effect) of many automated sensors currently installed for point measurements of the same variable (Avanzi et al., 2014b). The snow depth value at probe positions varies between 1.48 and 2.11 m. This represents a reduced variability with respect to the complete range of variation of U.A.S. snow depth values. On the one hand, the location of probes was randomly chosen, and snow depth spatial patterns are hardly predictable a priori (Grünewald and Lehning, 2014). On the other hand, additional investigations are necessary to assess U.A.S. performances in case of, e.g., shallow or patchy snow cover conditions (see Section 5.1).

It is worth comparing this precision to those reported in the literature for other remote-sensing techniques, by taking laser scanning as an example, given the abundance of papers on this topic, and the fact that this is nowadays one of the most used techniques within this field. Prokop et al. (2008) state that the standard deviation between manual probing and terrestrial laser scanning is up to 10 cm (for maximum distances of 300 m), while Grünewald et al. (2010) report a standard deviation of less than 5 cm when comparing terrestrial laser scanning surveys with tachimetry (for distances up to 250 m), and a standard deviation of 6 cm when comparing terrestrial and airborne laser scanning at peak accumulation. Moreover, Grünewald and Lehning (2014) mention that the vertical error of airborne laser scanning surveys of snow is usually below 30 cm, but can be larger in steep terrains. It follows that the preliminary evaluation of standard deviation we provide here seems in agreement with the one obtained when using a laser scanner. However, note that the area that we used for this first experiment is very limited, and at peak accumulation (when snow depth spatial differences are usually leveled). Moreover, the number of points we took cannot assess U.A.S. performances exhaustively, so that additional tests are needed to provide a more reliable estimation of σ, as well as a more exhaustive comparison with existing techniques.
4.3 Snow depth statistics

4.3.1 Test 1: trade-off between spatial resolution and topography description

Table 2 proposes a comparison in terms of number of pixels considered, average/maximum/minimum snow depth and the volume of snow estimated according to the three DSMs at 5, 10 and 20 cm that have been directly obtained from the cloud of points. Clearly, an increase of the spatial resolution would increase the number of pixels. Nevertheless, this seems to marginally affect the estimations of average/maximum/minimum snow depth, as also the estimation of the total volume of snow. Basing on these results, a spatial resolution of 20 cm seems to be the trade-off between the number of pixels considered (i.e., computational time) and the description of the snow micro-topography for the considered area.

4.3.2 Test 2: the effect of spatial sampling on snow depth statistics

We report in Figure 8 some examples of the snow depth maps, one would obtain by rescaling the original map at 5 cm by progressively doubling the cell size. While the three maps considered in the previous section were directly obtained during the survey processing, the maps we considered here were rescaled from one of these (the one at 5 cm resolution). In particular, we report the maps with a 640 cm resolution (panel a), 2560 cm resolution (panel b) and 10240 cm resolution (panel c). These maps show that, as expected, the larger the cell size, the lower the degree of detail in the spatial description. The coarsest map (∼100 m resolution) retains only a small fraction of original spatial variability (i.e., a lower-than-average snow depth in the proximity of the Malghera Lake, and a greater-than-average snow depth on slopes), but most of the spatial patterns in snow depth are lost.

In Figure 9, we quantify this loss. This map has been produced by calculating the differences between the rescaled map at 5120 cm resolution and the original map at 5 cm. This figure shows that considering a ∼50 m sampling distance can lead to strong under/over estimations of local snow depth (up to -1.9, or 2.1 m, respectively). We found similar differences when using 10240 m as spatial resolution. Areas having high snow depth differences are located nearby rivers and/or topographic irregularities. However, Fig. 9 shows that it is difficult to find locations within the ∼50 m resolution map with a satisfactory approximation.

In Figures 10 and 11 we report statistics in terms of mean (μ), maximum and minimum snow depth, standard deviation σ and CV as a function of maps resolution. These quantities have been calculated by making the pooling of all the data available for each map. Figure 10 tells that μ is almost constant across all the resolutions. This effect is probably due to the algorithm we used for the aggregation, that estimates the snow depth for an aggregated cell as the mean of the cells to be aggregated. Consequently, spatial differences are gradually homogenized when increasing the cell size. Minima and maxima are constant below 2 m and 10 m, respectively, but, for larger cell sizes, these quantities start to converge towards the mean.
However, Figure [11] shows that, within our case study, σ seems to present a well defined upper boundary (as well as CV). In particular, σ is minimum for coarser resolutions, and increases monotonously with smaller cell sizes. Nonetheless, it stabilizes when the cell size is < 1 m. The CV has similar dynamics. In the literature, it has been observed that snow depth variability increases with higher sampling resolutions (López Moreno et al., 2015), but, to our knowledge, no data-set is still available with a sub-meter horizontal sampling resolution. Consequently, it is not possible for us to find confirmations of this behavior in previous analyses. However, if confirmed, it could help defining a lower boundary for sampling resolution to be considered when measuring snow depth during the accumulation season (say, 1 m resolution). This is an important direction of future investigations.

The range of CV that we found here is much lower than those reported by, e.g., López Moreno et al. (2015), but seems in agreement with the results by López Moreno et al. (2011) for a survey run during January. Snow depth spatial variability increases with time during the year (Ménard et al., 2014; López Moreno et al., 2015), due to local heterogeneity in ablation dynamics. It follows that a reduced CV during the winter season within a limited area can be expected.

4.3.3 Test 3: U.A.S.-based volume of snow vs. spatial interpolation

Table 3 reports the comparison between the estimated snow volume using a set of simple interpolation techniques of the 12 snow depth probes (namely, arithmetic mean, IDW, Thiessen method and ordinary Kriging) and the estimation of snow volume operated by the U.A.S. system (5 cm resolution). As we have already said, interpolating sparse measurements represent the typical method used in practical applications to determine the total volume of water in the snow form which could be potentially available for, e.g., hydropower production, irrigation or civil uses.

Results show that the differences among the estimates of different interpolation techniques are rather reduced. These are ~ 1000 m3, with the total volume equal to ~ 360000 m3. Nonetheless, all these techniques underestimate the snow volume estimated by the U.A.S. system (~ 460000 m3). The average percentage difference in snow volume estimation, with respect to the one estimated by the U.A.S. system, is equal to $\sim 21\%$. In terms of absolute values, the average difference is ~ 96350 m3. Considering an average bulk snow density of 450 kg/m3 (as measured in the snow pit), this would entail an absolute difference in SWE estimation of ~ 43358 m3.

It is worth recalling that the considered area has a very reduced extension with respect to the usual distance between gauged sites in instrumental networks (see e.g. Fassnacht et al. (2003)). This result shows that the assessment of snow depth micro-topography has clear hydrological impacts on many applications of scientific as well as engineering interest and cannot be easily neglected. From this perspective, U.A.S. systems confirm to be able to easily, cheaply, and semi-automatically return a more refined representation of snow depth.

Table 3 shows that all interpolation techniques return an underestimated volume of snow. This is a case-specific result, that is due to the choice of probe positions. In fact, Figure 7 shows that
manual measurements were taken in areas that were mainly characterized by shallow snow cover. Since evaluating *a-priori* representative locations is very difficult (Grünewald and Lehning, 2014), and since they could even vary from year to year basing on snow redistribution dynamics, this result shows again the advantage of using a directly distributed estimation instead of relying on a simplified representation of snow topography.

5 Conclusions

For the first time, we have here mapped snow depth variability at cm scale by means of a photogrammetry-based survey using drones. For this purpose, we run two surveys. The first one, during September 2013, allowed to reconstruct the topography of the ground. This survey will not be necessary for future assessment of snow distribution in the same area. Then, during April 2014, a second survey allowed to reconstruct the variability of snow depth, by vertical differentiation of the maps.

Results show that: 1) ortophoto and DSM of autumn survey are in agreement with the topographic map available for the study area; 2) the average difference between manual and U.A.S. based measurements of snow depth (and the associated standard deviation) seems competitive with the typical precision of point measurements and other distributed techniques (the average difference obtained is equal to -7.3 cm, with an associated standard deviation of 12.8 cm); 3) the standard deviation (and \(CV \)) across the study area increases with decreasing spatial sampling distances, but stabilizes below 1 m resolution, thus suggesting the existence of a trade-off between increasing spatial resolution of surveys and the amount of significant information obtained for hydrological applications; 4) the evaluation of snow depth volume (hence, \(SWE \)) using classical interpolation techniques of randomly chosen point values of snow depth is severely biased due to the biases in point snow depth values chosen for the interpolation (average difference in snow volume estimation, with respect to the one estimated by the U.A.S., equal to \(\sim 21 \% \)).

5.1 Outlook

The U.A.S. technology has some interesting potentialities within the framework of available methods to reconstruct the spatial variability of snow surface. In fact, this device allows to obtain semi-automated, quick and repeatable surveys of limited areas, with a quite high vertical precision. Although the device that we used here needs the operator to assist it during take-off operations, other devices (currently not available to the authors) can take off and land in an automated way, and can cover much wider areas. This could let repeated (say, daily) surveys to be autonomously obtained, even without needing an operator to reach the target area. This, together with the possibility to substitute, or integrate, optical sensors with sensors at different wavelengths, could represent in the future an alternative to automated point stations to directly obtain distributed measurements of snow variables. Moreover, attempts have been already made to design supports that could be able to resist...
to harsh climatic conditions (Funaki et al., 2008), such as strong winds, that would make unfeasible a survey using the same sensor used here.

Future developments should compare the performances of this technique with those obtained by other remote sensing approaches. The main reason is that this test has been run during just one day, and one location, in order to provide a preliminary assessment of the feasibility of using drones to retrieve snow depth over a limited area. No specific limitation seems to hamper the use of these devices over larger areas, apart from batteries duration, or within areas characterized by patchy snow cover conditions. Moreover, the fact that U.A.S. systems are basically a novel support to run traditional surveys (such as photogrammetry) improves our confidence towards these systems, their expected outcomes and precision.

However, different weather conditions (such as precipitation events, or scarce visibility), different snow cover conditions (such as shallow snow covers) and/or different topographic patterns could have an impact on the performances of these devices that must be still assessed. As an example, a shallow snow cover (say, snow depth lower than 20/30 cm) is likely to be difficult to be measured correctly given the standard deviation we found here (12.8 cm), while the presence of vegetation can create ambiguity in the mapping of snow. This could be solved by using optical data to detect snow covered areas, only. Moreover, scarce visibility can potentially undermine a photogrammetry-based survey given the difficulties in detecting the ground (or snow) surface from an elevation of around 100 m during, e.g., fog events or intense rainfalls (or snowfalls).

Acknowledgements. The Authors want to thank A2A for the logistic support during the set up of the experiment. We would like to thank Mr. Riccardo Capetti and Mr. Amilcare Marchetti (A2A) for their assistance during field activities. We would like to thank the Editor, Prof. Philip Marsh, Prof. Steven R. Fassnacht (referee) and an anonymous referee for their feedbacks on the manuscript.
References

Table 1: Comparison between manual (H_M) and U.A.S. ($H_{U.A.S.}$) snow depth measurements.

<table>
<thead>
<tr>
<th>ID</th>
<th>H_M [m]</th>
<th>$H_{U.A.S.}$ [m]</th>
<th>$H_M - H_{U.A.S.}$ [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.48</td>
<td>1.40</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>2.07</td>
<td>2.06</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>1.75</td>
<td>1.96</td>
<td>-0.21</td>
</tr>
<tr>
<td>4</td>
<td>1.88</td>
<td>2.05</td>
<td>-0.17</td>
</tr>
<tr>
<td>5</td>
<td>1.68</td>
<td>1.93</td>
<td>-0.25</td>
</tr>
<tr>
<td>6</td>
<td>1.85</td>
<td>2.13</td>
<td>-0.28</td>
</tr>
<tr>
<td>7</td>
<td>1.96</td>
<td>2.03</td>
<td>-0.07</td>
</tr>
<tr>
<td>8</td>
<td>2.11</td>
<td>2.17</td>
<td>-0.06</td>
</tr>
<tr>
<td>9</td>
<td>1.91</td>
<td>1.96</td>
<td>-0.05</td>
</tr>
<tr>
<td>10</td>
<td>1.89</td>
<td>1.81</td>
<td>0.08</td>
</tr>
<tr>
<td>11</td>
<td>1.45</td>
<td>1.49</td>
<td>-0.04</td>
</tr>
<tr>
<td>12</td>
<td>1.60</td>
<td>1.52</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Average difference [m] -0.073
St. dev. difference [m] 0.128
Table 2: Snow volume calculation using U.A.S. measurements and three different spatial resolutions: 5, 10, 20 cm.

<table>
<thead>
<tr>
<th>Resolution [cm]</th>
<th>pixels [#]</th>
<th>\bar{H} [m]</th>
<th>H_{max} [m]</th>
<th>H_{min} [m]</th>
<th>V [m3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>81918743</td>
<td>2.26</td>
<td>4.21</td>
<td>-0.22</td>
<td>463652.3</td>
</tr>
<tr>
<td>10</td>
<td>20479686</td>
<td>2.26</td>
<td>4.35</td>
<td>-0.24</td>
<td>462957.8</td>
</tr>
<tr>
<td>20</td>
<td>5119921</td>
<td>2.27</td>
<td>4.15</td>
<td>-0.24</td>
<td>464093.0</td>
</tr>
</tbody>
</table>
Table 3: Comparison between the snow volume via U.A.S. $V_{U.A.S.} = 463652.3 \text{ m}^3$ and the one obtained via spatialization techniques (V_T).

<table>
<thead>
<tr>
<th>Technique</th>
<th>V_T [m3]</th>
<th>$V_{U.A.S.} - V_T$ [m3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith.c mean</td>
<td>369146.3</td>
<td>94505.9</td>
</tr>
<tr>
<td>IDW</td>
<td>368216.9</td>
<td>95435.3</td>
</tr>
<tr>
<td>Thiessen</td>
<td>363400.5</td>
<td>100251.7</td>
</tr>
<tr>
<td>Kriging</td>
<td>368433.1</td>
<td>95219.2</td>
</tr>
</tbody>
</table>
Figure 1: Location of the study area in western Val Grosina valley, Lombardia region, northern Italy. In the right panel, it is reported the topographic map of the area, with isolines every 10 m and the elevation (in m) of some points of interest.
Figure 2: Camera images and their overlaps during each of the two surveys. The left panel refers to the survey made during September 2013, while the right panel regards the survey made in April 2014. The legend indicates the number of images covering each area.
Figure 3: Ortophoto of the survey run on 26th September 2013.
Figure 4: Ortophoto of the survey run on 11th April 2014.
Figure 5: Digital surface model (DSM) of the two surveys. Panel a: DSM of the survey run during September 2013. Panel b: DSM of the survey run during April 2014. For both DSMs, a 5×5 cm2 cell size has been used.
Figure 6: A comparison between U.A.S.-based contours (10 m, in red) and those reported in the topographic map of the area, see Figure 1.
Figure 7: A map of snow depth distribution over the study area, obtained by means of difference of the elevations of the maps reported in Fig. 5. Different colors indicate different values of snow thickness (see the legend scale). Black dots indicate the location of the 12 manual measurements of snow depth.
Figure 8: Rescaled maps of snow depth at different cell sizes. Panel a: 640 cm, panel b: 2560 cm, panel c: 10240 cm. See Section 4.3.2 for details.
Figure 9: Differences between the rescaled map at 5120 cm resolution and the original map at 5 cm. See Section 4.3.2 for details.
Figure 10: Mean snow depth (μ, in black), maximum and minimum values (blue and red lines, respectively) as a function of resolution.

Figure 11: Standard deviation σ (black line) and CV (red line) of snow depth as a function of resolution.