Editor

The manuscript has improved after the revision. There are however still issues here and there. There is a need to show more details in the fitting method, the use of F-test, and the derivation of the correction equations. A revision is necessary.

Authors' response: Ok. Thank you very much.

Comments from Referees:

GENERAL COMMENTS

The manuscript improved a lot compared to the first version I reviewed. There are still a few unclear areas; I included my comments into the PDF document enclosed. I would like to see more details related to the fitting method and the use of F-test (chapter 2.2) and the derivation of the equations (chapter 3.3 and 3.4, Table 4). Also suggest adding a few lines comparing the maintenance requirements of the PIT and DFIR gauges (in chapter 4.2).

Authors' response: Thank you very much for your detailed and good advices.

Author's changes in manuscript:

1. "more details related to the fitting method and the use of F-test (chapter 2.2)"

The one independent variable equations were fitted directly by using Microsoft Excel. Whereas for the equations with more independent variables, the function NLINFIT in Matlab software was used. They are both based on the least square method in mathematics (Charnes et al., 1976). The significance of the equations were evaluated by using F-test method (Snedecor and Cochran, 1989). For the simultaneous equations, the F-value and its significant value (α) could be calculated by using function LINEST and FDIST in the Microsoft Excel, respectively. If the independent variable X presents in the forms like $X^{0.5}$, exp(0.5X) and 0.5ln(X) etc., its form should be revised to agree with the LINEST function. For example, the equation '$Y=a*X_1^b+c*exp(d*X_2)+e$' should be revised as '$Y=a*X_3+c*X_4+e$' before using LINEST to
acquire its F-value.

2. "more details related to the derivation of the equations (chapter 3.3 and 3.4, Table 4)."

Some lines are added in Page 9 Line 9: As described in Chapter 2.2, to calculate the F-value of this kind of equation using LINEST function in Microsoft Excel, the W_3^{s10} and W_2^{s10} should be converted into new variables $X_1 = W_3^{s10}$ and $X_2 = W_2^{s10}$ firstly. Other forms such as the power law and exponential expressions are treated in a similar way.

See detail in the following "Detailed comments".

3. "adding a few lines comparing the maintenance requirements of the PIT and DFIR gauges (in chapter 4.2)"

Some lines are added in Page 12 Line 10: The pit shield is easy to transit, install, observe and maintain. It occupies only a small place and could be installed in the CMA’S standard meteorological fields, but the DFIR shield is larger and should keep away from the other observations. In the mountains regions, the DFIR shield is difficult to carry and install. In addition, the pit shield is only about 150 USD, 6000 USD cheaper than the DFIR shield in China. Therefore, it could be more convenient for researchers and observers to use the CSPG PIT as the standard reference for snow and mixed precipitation in other locations.

Please see the revisions in the following "Detailed comments".
1. Page 1 Line 15: The CSPG_{REF} and the CSPG_{ER} caught 3.6% and 2.5% rainfall.

Authors' response: It's true and need not to revise.

Author's changes in manuscript:

2. Page 2 Line 14: Its reference is a Mk2 gauge elevated 1 m above the ground and equipped with...

Authors' response: Ok.

Author's changes in manuscript: Its reference is a British Meteorological Office standard gauge of Snowdon type (Mk2) elevated 1 m above the ground and equipped with...

2. Page 3 Line 6-7: Due to lack of equipments at that time, the wind data were not observed at the intercomparion site (Yang et al., 1991; Goodison et al., 1998). For the wind-induced undercatch, the derived CSPG catch ratio equations were based on the 10 m height wind speed at the open Daxigou Meteorological Station (43.06°, 86.5°E, 3540 m; Yang, 1988; Yang et al., 1991), which was about 1.7 km far from the intercomparion site. It would induce some uncertainties in the catch ratio equations established by Yang et al. (1991) for the CSPG.

3. Page 3 Line 13: China, using the pit....

Authors' response: Ok.

Author's changes in manuscript: China, using the pit.

3. Page 3 Line 29: (2007) had conducted an intercomparison experiment at 30 sites (altitude varies from about 4.8 m to 3037 m) over China, and they used the pit as reference shield. A total of 29,000 precipitation events had been observed.

Authors' response: Ok.

Author's changes in manuscript: China, using the pit.

4. Page 3 Line 29: however, their precipitation gauges are Tretyakov, MK2 (Nepal2003, India) and U.S. 8" in the neighboring countries. As the third pole in the world, the Tibetan

Authors' response: Yes, they are. Table 1 is derived from Ma et al. (2014). They said that the instrumental details are taken from Sevruk and Klemm (1989). We look for them in this literature, and find some errors: Nepal2003 should be Nepal 203. To avoid confusion, the gauge names should be described more detailed in this paper.
Authors' changes in manuscript: However, their precipitation gauges are Tretyakov, MK2, Nepal 203, Indian standard and U.S. 8" in the neighboring countries.

Authors' response: Ok.

Author's changes in manuscript: One is comparisons among the CSPGUN, CSPGSA, CSPGPIT and CSPGDFIR gauges.
Authors' response: They are for each observation.

Author's changes in manuscript: For loss of the CSPG per observation, \(P_w \) is 0.23 mm for rainfall measurements, 0.30 mm for snow and 0.29 mm for mixed precipitation (Yang, 1988; Yang et al., 1991), based on the measurements in the Tianshan valley site.

7. Page 6 Line 2-3:
Authors' response: ok

Author's changes in manuscript: In this field experiment, the different configuration of the CSPGUN, CSPGSA, CSPGPIT and CSPGDFIR used the same \(P_w \), \(P_e \) and \(P_t \) well quantified constant value as described above. Thus the focus of the present study is the wind-induced error. Wind may be

8. Page 6 Line 9:
Authors' response: ok

Author's changes in manuscript: Therefore, in this paper, the catch ratio (\(CR = \frac{CSPGX}{CSPGDFIR} \), %; \(X \) denotes UN, SA or PIT.) follows their definition by using CSPGDFIR as reference.

9. Page 6 Line 14-15:
Authors' response: ok

Author's changes in manuscript: ... so the Eqs. (5)-(7) for CSPG catch ratios versus daily mean wind speed \(W_s \) (m s\(^{-1}\)) at 10 m height are used (Yang et al., 2001).

10. Page 6 Line 23:
Authors' response: ok

Author's changes in manuscript: The one independent variable equations were fitted directly by using Microsoft Excel. Whereas for the equations with more independent variables, the function NLINFIT in Matlab software was used. They are both based on the least square method in mathematics (Charnes et al., 1976). The significance of the equations were evaluated by using
F-test method (Snedecor and Cochran, 1989). For the simultaneous equations, the F-value and its significant value (α) could be calculated by using function LINEST and FDIST in the Microsoft Excel, respectively. If the independent variable X presents in the forms like $X^{0.5}$, exp(0.5X) and $0.5\ln(X)$ etc., its form should be revised to agree with the LINEST function. For example, the equation

$$Y = aX^b + c\exp(dX) + e$$

should be revised as

$$Y = aX + cX + e$$

before using LINEST to acquire its F-value.

11. Page 7 Line 2:

$$\frac{n_{3.5} - n_{3.5}}{n_{3.5}}$$

Where Z denotes the anemometer installation height at 0.7 m or 10 m.

Authors' response: ok

Author's changes in manuscript: Where Z denotes the anemometer installation height at 0.7 m or 10 m.

12. Page 8 Line 1:

Authors' response: ok

Author's changes in manuscript: The Chapter 3.2 was revised as:

From September 2010 to April 2015, a total of 44 mixed precipitation events were observed. As shown in the Table 3, the CSPG$_{PIT}$ also caught the most mixed P among the gauges. Good linear correlations are observed among the gauges (Fig.3) too. The CSPG$_{PIT}$ caught 1.1 mm more mixed precipitation than the CSPG$_{DFIR}$ in the near three successive years. The linear relationship is statistically significant with an R^2 value as about 0.98 (Fig.3f). Thus the CSPG$_{PIT}$ instead of the CSPG$_{DFIR}$ could be selected as the reference gauge for the CSPG$_{UN}$ and the CSPG$_{SA}$ at the experimental site.

The first paragraph of Chapter 3.3 is revised as:

From September 2010 to April 2015, a total of 84 snowfall events are observed. During the period from September 2012 to April 2015, the CSPG$_{SA}$, CSPG$_{PIT}$ and CSPG$_{DFIR}$ caught 11.1%, 16.0% and 20.6% more snowfall than the CSPG$_{UN}$, respectively. The CSPG$_{PIT}$ and the CSPG$_{DFIR}$ caught more 4.4% and 8.5% snowfall than the CSPG$_{SA}$, respectively (Table 3).
13. Page 9 Line 8-9:

Authors' response: ok

Author's changes in manuscript: ... and the mixed precipitation events are less than 3.0 mm. For this reason the limit was decreased, single or daily snowfall and mixed precipitation greater than 1.0 mm was chosen to use.

14. Page 9 Line 8-9:

Authors' response: They are from fitting plots Fig.5 by using Microsoft Excel.

Author's changes in manuscript: The text is revised as:

The following two equations (10) and (11) shown in Fig.5 could be used to adjust the rainfall event data from the CSPGUN and CSPGSA, respectively. They are significant at 0.06 and 0.01 level, respectively (Table 4).

15. Page 9 Line 29-30:

Authors' response: On daily scale, the best relationships between rainfall CRs and wind speed at gauge height (W_0) are also the cubic functions, but they don't pass the F-test even $\alpha=0.25$ (Table 4).

Author's changes in manuscript: On daily scale, the relationships between rainfall CRs and wind speed at gauge height (W_0) are also the cubic functions, but they don't pass the F-test even $\alpha=0.25$ (Table 4).

16. Page 10 Line 1:

Authors' response: As described in 10. Page 6 Line 23: For the simultaneous equations, the F-value and its significant value (α) could be calculated by using function LINEST and FDIST in the Microsoft Excel, respectively. If the independent variable X presents in the forms like $X^{0.5}$, $\exp(0.5X)$ and $0.5\ln(X)$ etc., its form should be revised to agree with the LINEST function. For example, the equation ' $Y=a*X_1^b+c*\exp(d*X_2)+e$ ' should be revised as ' $Y=a*X_3+c*X_4+e$ ' before using LINEST to acquire its F-value.

Author's changes in manuscript: Some lines are added in Page 9 Line 9: As described in Chapter 2.2, to calculate the F-value of this kind of equation using LINEST function in Microsoft Excel, the W^{3}_{s10} and W^{2}_{s10} should be converted into new variables $X_1=W^{3}_{s10}$ and $X_2=W^{2}_{s10}$ firstly. Other forms such as the power law and exponential expressions are treated in a similar way.
17. Page 11 Line 18: Authors' response: Ok.

Author's changes in manuscript: shading induced similar lower wind

Author's changes in manuscript: The pit shield is easy to transit, install, observe and maintain. It occupies only a small place and could be installed in the CMA's standard meteorological fields, but the DFIR shield is larger and should keep away from the other observations. In the mountains regions, the DFIR shield is difficult to carry and install. In addition, the pit shield is only about 150 USD, 6000 USD cheaper than the DFIR shield in China. Therefore, it could be more convenient for researchers and observers to use the CSPG Pit as the standard reference for snow and mixed precipitation in other locations.

Author's changes in manuscript: From most to the least rainfall and mixed precipitation, the order is: CSPG Pit > CSPG DFIR > CSPG SA > CSPG UN. While in the snowy season, it follows the rule of better wind-shield catch with more snow: CSPG DFIR > CSPG Pit > CSPG SA > CSPG UN. The wind-induced bias of CSPG SA and the CSPG UN are well tested, and their adjustment equations could be used. They would help to improve the precipitation accuracy in China.
20. Page 13 Line 21:

Authors' response: Ok.

Author's changes in manuscript: ... the CSPG\textsubscript{PIT} could be used as the reference gauge considering its highest catch ratio, simplicity, low cost and less maintenance requirements.

21. Page 17 Table 2: Format Better

Authors' response: Ok.

Author's changes in manuscript: ...

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Abbreviation</th>
<th>Size ((\phi) stand for orifice diameter and (h) for observation height)</th>
<th>Start date</th>
<th>End date</th>
<th>Measure time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unshielded China standard precipitation gauge (CMA, 2007a)</td>
<td>CSPG\textsubscript{UN}</td>
<td>(\phi=20\text{cm}, h=70\text{cm})</td>
<td>Jun 2009</td>
<td>Apr, 2015</td>
<td>20:00 and 08:00, LT</td>
</tr>
<tr>
<td>Single Alter shield (Struzer, 1971) around a CSPG</td>
<td>CSPG\textsubscript{SA}</td>
<td>(\phi=20\text{cm}, h=70\text{cm})</td>
<td>Jun 2009</td>
<td>Apr, 2015</td>
<td>20:00 and 08:00, LT</td>
</tr>
<tr>
<td>A CSPG in a Pit (Sevruk and Hamon, 1984)</td>
<td>CSPG\textsubscript{PIT}</td>
<td>(\phi=20\text{cm}, h=0\text{cm})</td>
<td>Sep 2010</td>
<td>Apr, 2015</td>
<td>20:00 and 08:00, LT</td>
</tr>
<tr>
<td>DFIR shield (Goodison et al., 1998) around a CSPG</td>
<td>CSPG\textsubscript{DFIR}</td>
<td>(\phi=20\text{cm}, h=3.0\text{m})</td>
<td>Sep 2012</td>
<td>Apr, 2015</td>
<td>20:00 and 08:00, LT</td>
</tr>
</tbody>
</table>

22. Page 18 Table 2: Some lines thicker!

Authors' response: Ok.

Author's changes in manuscript: ...
23. Page 27 Figure 8:

Authors' response: The figure appears to have errors when transferring word into PDF file.

Author's changes in manuscript: ...

Figure 8. (a) Annual snowfall (mm) and (b) annual snowfall to total precipitation ratio in China.
Precipitation measurement intercomparison in the Qilian Mountains, Northeastern Tibetan Plateau

R. Chen*, J. Liu, E. Kang, Y. Yang, C. Han, Z. Liu, Y. Song, W. Qing, P. Zhu

Qilian Alpine Ecology and Hydrology Research Station, Key Laboratory of Inland River Ecohydrology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract: Systematic errors in gauge-measured precipitation are well-known, but the wind-induced error of Chinese standard precipitation gauge (CSPG) has not been well tested. An intercomparison experiment was carried out from September 2010 to April 2015 in the Hulu watershed, northeastern Tibet Plateau. Precipitation gauges included (1) an unshielded CSPG (CSPGUN), (2) single Alter shield around a CSPG (CSPGSA), (3) a CSPG in a pit (CSPGPIT) and (4) a Double-Fence International Reference shield with a Tretyakov-shielded CSPG (CSPGDFIR). The intercomparison experiments show that the CSPGSA, CSPGPIT, CSPGDFIR caught 0.9%, 4.5% and 3.4% more rainfall, 7.7%, 15.6% and 14.2% more mixed precipitation (snow with rain, rain with snow), 11.1%, 16.0% and 20.6% more snowfall, and 2.0%, 6.0% and 5.3% more precipitation (all types) than the CSPGUN from September 2012 to April 2015, respectively. The CSPGPIT and the CSPGDFIR caught more 3.6% and 2.5% rainfall, 7.3% and 6.0% more mixed precipitation, 4.4% and 8.5% more snowfall, and 3.9% and 3.2% more total precipitation than the CSPGSA, respectively. Whereas the CSPGDFIR caught 1.0% less rainfall, 1.2% less mixed precipitation, 3.9% more snowfall and 0.6% less total precipitation than the CSPGPIT, respectively. From most to least rain and mixed precipitation, the measurements are ranked as follows: CSPGPIT > CSPGDFIR > CSPGSA > CSPGUN. For the snowfall, it follows as: CSPGDFIR > CSPGPIT > CSPGSA > CSPGUN. The CSPGDFIR is used as reference to calculate the catch ratios (CRs) of the CSPGUN, CSPGSA and CSPGPIT. CR vs. 10m wind speed during the period of precipitation indicates that with increasing wind speed from 0 to 8.0m/s, the rainfall CRUN/DFIR or CRSA/DFIR decreased slightly. For the mixed precipitation, wind speed has no significant effect on CRUN/DFIR or CRSA/DFIR below 3.5m/s. For the snowfall, the CRUN/DFIR or CRSA/DFIR vs. wind speed shows that CR decreases with increasing wind speed. The adjustment equations for three different precipitation types for the CSPGUN and CSPGSA were established based on the CR vs. wind speed analysis and World Meteorological Organization (WMO) recommended procedure. They would help to improve the current bias error-adjusted

*Corresponding author. E-mail address: crs2008@lzb.ac.cn (R. Chen)
method and precipitation accuracy in China. Results indicate that combined use of the CSPGDFIR and the CSPGPIT as reference gauges for snowfall and rainfall, respectively, could enhance precipitation observation precision. Applicable regions for the CSPGPIT or the CSPGDFIR as representative gauges for all precipitation types are present in China.

Keywords: Precipitation, Gauge catch ratio, Wind-induced undercatch, Field observation, Tibetan Plateau

1 Introduction

Accurate precipitation data are necessary for better understanding of the water cycle. It has been widely recognized that gauge-measured precipitation has systematic errors, mainly caused by wetting, evaporation losses and wind-induced undercatch, and snowfall observation errors are very large under high wind (Sugiura et al., 2003). These errors affect the available water evaluation in a large number of economic and environmental applications (Tian et al., 2007; Ye et al., 2012).

Back in 1955, the World Meteorological Organization (WMO) conducted the first precipitation measurement intercomparison (Rodda, 1973). Its reference is a British Meteorological Office standard gauge of Snowdon type elevated 1 m above the ground and equipped with the Alter wind shield. But this reference does not show the correct amount of precipitation. This could be why the first international intercomparison failed (Struzer, 1971). Rodda (1967) compared the catch of a UK 5” manual gauge exposed normally at the standard height of 30.5 cm above ground, with a Koschmieder-type gauge exposed in a pit. This gauge in a pit caught 6% more precipitation than the normally exposed gauge. In the second WMO precipitation measurement intercomparison (Rain, 1972–1976), the pit with anti-splash grid was designated the reference standard shield for rain gauges (Sevruk and Hamon,1984). In the third WMO precipitation measurement intercomparison (Snow, 1986–1993), the Double Fence International Reference (DFIR) shield with a Tretyakov shield was designated the reference standard snow gauges configuration (Goodison et al., 1998). In the fourth WMO precipitation measurement intercomparison (Rain Intensity, 2004–2008), different principles were tested to measure rainfall intensity and define a standardized adjustment procedure (Lanza et al., 2005). Because automation of precipitation measurements are widespread, the WMO Commission for Instruments and Methods of Observation (CIMO) organized the WMO Solid Precipitation Intercomparison Experiment (WMO-SPICE; Wolff et al., 2014) to define and validate automatic field instruments as references for gauge intercomparison, and to assess automatic systems and the operational networks for precipitation observations. The WMO-SPICE project still selected DFIR shield as part of the reference configurations.
The DFIR shield has been operated as part of reference configurations at 25 stations in 13 countries around the
world (Golubev, 1985; Sevruk et al., 2009), but deviations from the DFIR measurements vary by gauge type and
precipitation type (Goodison et al., 1998). In China, the Chinese standard precipitation gauge (CSPG) and the
Hellmann gauge were firstly compared by using DFIR shield as reference configurations in the valley site of
Tianshan (43°7′ N, 86°49′ E, 3720 m), during the third WMO precipitation measurement intercomparison
experiment from 1987 to 1992 (Yang, 1988; Yang et al., 1991). The wetting, evaporation losses and trace
precipitation of CSPG were well quantified based on the huge observation data. Due to lack of equipments at that
time, the wind data were not observed at the intercomparion site. Because there are not wind data at the
intercomparion site (Yang et al., 1991; Goodison et al., 1998), for the wind-induced undercatch, the
derived CSPG catch ratio equations were based on the 10 m height wind speed at the open Daxigou Meteorological Station (43.06°, 86.5°E, 3540 m; Yang, 1988; Yang et al., 1991). The distance, which is about 1.7 km far from the intercomparion site, between the Daxigou site and the Tianshan valley site thus their wind speeds are different. It would induce some uncertainty in the catch ratio equations established by Yang et al. (1991) for the CSPG. During the period from 1992 to 1998, Ren and Li (2007) had conducted an intercomparison experiment at 30 sites (altitude varies from about 4.8 m to 3837 m) over China, and they used the pit as reference shield. A total of 29,000 precipitation events had been observed. However, the DFIR was not used as reference configurations, and there were only 3 stations located in the West Cold Regions of China (Chen et al., 2006) where the solid precipitation often occurred. Blowing snow and thick snow cover have traditionally limited the pit’s use as a reference shield for snowfall and mixed precipitation (snow with rain, rain with snow). Ye et al. (2004, 2007) developed a bias-error adjusting method based on the observed data from 1987 to 1992 at the Tianshan valley site, and they found a new precipitation trend according to the adjusted precipitation data over the past 50 years in China (Ding et al., 2007). The new adjusted precipitation would change the knowledge on water balance in many basins in China (Tian et al., 2007; Ye et al., 2012). Although adjustment procedures and reference measurements were developed in several WMO international precipitation measurement intercomparisons (Goodison et al., 1998; Sevruk et al., 2009; Yang, 2014), and several bias-error adjusting methods had been put forward for the CSPG (Ye et al., 2004, 2007), the wind-induced error of CSPG had not been well tested especially in the cold and high regions such as the Tibetan Plateau, China. In these cold regions, solid precipitation often occurs and additional attention must be paid to wind-induced errors of gauge measured precipitation. Because of the limited intercomparison observation data in China, Ma et al. (2014) used the adjusted equations from neighboring countries except for the results from Tianshan China (Yang et al., 1991).
to correct the wind-induced errors on Tibetan Plateau. However, their precipitation gauges are Tretyakov, MK2, Nepal 2003, Indian standard and U.S. 8″ in the neighboring countries. As the third pole in the world, the Tibetan Plateau is an ecologically fragile region and the source of several large rivers in China and neighboring countries, accurate precipitation data are urgently needed. Therefore, we present a nearly five-year intercomparison experiment in the Qilian mountains at the northeastern Tibet Plateau, China, to establish adjustment equations for the widely used unshielded CSPGs.

The CSPG is the standard manual precipitation gauge used by the China Meteorological Administration (CMA) at more than 700 stations since the 1950s. These precipitation data sets have been used widely and need to be adjusted by using better methods. The Single Alter shield (SA) (Struzer, 1971) is used by the CMA to enhance catch ratios of automatic gauges (Yang, 2014), so the SA shield was selected as another intercomparison configuration for the present study. The CSPGDFIR was selected as the reference for all precipitation types. The intercomparison experiments tested and assessed existing bias adjustment procedures for the CSPGUN and the SA shield around a CSPG (CSPGSA).

2 Data and Methods

2.1 Intercomparison experiments and relevant data

Precipitation intercomparison experiments (Fig.1, Table 1) were conducted at a grassland site in the Hulu watershed in the Qilian mountains, on the northeastern edge of Tibet Plateau, China (99°52.9′, 38°16.1′, 2980 m). A meteorological cryosphere-hydrology observation system (Chen et al., 2014a) has been established since 2008 in the Hulu watershed. Annual precipitation is about 447.2 mm during 2010-2012 and is concentrated during the warm season from May to September at this site. The annual temperature is approximately 0.4 °C, with a July mean (T_{mean}) of 4.2 °C and a January mean of -4.1°C (Table 1). The annual evaporation ability (E_0) is about 1102 mm (Table 1).

The intercomparison experiments included (1) an unshielded CSPG (CSPGUN; orifice diameter=20 cm, height=70 cm), (2) single Alter shield around a CSPG (CSPGSA), (3) a CSPG in a pit (CSPGPIT), and (4) a DFIR shield with a Tretyakov-shielded CSPG (CSPGDFIR) (Fig.1, Table 2). The CSPGUN, CSPGSA and CSPGPIT were installed before September 2010, whereas the CSPGDFIR was installed in September 2012 (Table 2). In the cold season (October to April), snowfall dominated the precipitation events, and in the warm season (May to September), rainfall dominated. The precipitation amount (P) is measured manually twice a day at 08:00 and 20:00 LT (Beijing time) according to the CMA’s criterion (CMA, 2007a). In the warm season, P is measured by volume. In the cold season, the funnel and glass bottle are removed from the CSPG and precipitation is weighed...
under a windproof box to avoid wind effects. If there is frost on the outside surface of the collector, it will be
wiped up by using a dry hand towel. In the rare cases of snowfall accumulating on the rim of the collector, half of
them (semi circular) will be removed before they are weighted.

The precipitation phase (snow, rain and mixed) is discriminated by observer according to the CMA’s criterion
(CMA, 2007b). This method has been used since the 1950s at the more than 700 stations in China. Based on the
CSPG measurements, several methods of phase discrimination have been reported, such as the air temperature
index method (e.g. Zhang et al., 2004; Ye et al., 2004; Chen et al., 2014b), dew point index method (e.g. Chen et
al., 2014b), and the new wet bulb temperature index method (Ding et al., 2014). However, the parameters of these
methods vary largely in spatial, and their reference precipitation phase data are still from the CMA’s stations.

Relevant variables such as air temperature (maximum and minimum; \(T_{\text{max}} \) and \(T_{\text{min}} \)) have been observed
manually at the site since June, 2009. A tower is used to measure wind speed (Lisa/Rita, SG GmbH; \(W_s \)) and air
temperature (HMP45D, Vaisala) at 1.5m and 2.5m heights in association with relative humidity (HMP45D,
Vaisala) and precipitation (Chen et al., 2014). They are observed every 30 seconds and are saved as half-hourly
values (sum or mean). The specific meteorological conditions at the site are summarized in Table 1.

Fig.1 about here

Table 1 and Table 2 about here

2.2 Adjustment methods

This field experiment focuses on two key aspects. One is comparisons among the CSPGUN, CSPGSA, CSPGPIT
and CSPGDFIR gauges. Another purpose is to establish adjustment equations for the CSPGUN and the CSPGSA by
using the CSPGDFIR as reference. To adjust the gauge-measured precipitation, Sevruk and Hamon (1984) have
given the general formula as:

\[
P_c = K P_g + \Delta P_e + \Delta P_e + \Delta P_t = P_{DFIR} + \Delta P_w + \Delta P_e + \Delta P_t \tag{1}
\]

Where \(P_c \) is the adjusted precipitation, \(K \) is the wind-induced coefficient and \(P_g \) is the gauge-measured
precipitation. \(P_w \) is the wetting loss, \(P_e \) is the evaporation loss, \(P_t \) is trace precipitation and \(P_{DFIR} \) is DFIR-shielding
precipitation. For loss of the CSPG per observation, \(P_w \) is 0.23 mm for rainfall measurements, 0.30 mm for snow
and 0.29 mm for mixed precipitation (Yang, 1988; Yang et al., 1991), according to the measurements in
the Tianshan valley site. Ren and Li (2007) reported the mean \(P_w \) was about 0.19 mm for the total precipitation
over eastern China. The CSPG design reduces \(P_e \) to a near-zero value smaller than other losses in the warm, rainy
season (Ye et al., 2004; Ren and Li, 2007). In winter, \(P_e \) is already small (0.10–0.20 mm/day) according to the
results in Finland (Aaltonen et al., 1993) and Mongolia (Zhang et al., 2004). To prevent evaporation loss in
Chinese operational observations on some particular days, e.g., hot and dry days or days of snow, precipitation is measured as soon as the precipitation event stops (CMA, 2007a; Ren and Li, 2007). A precipitation event of less than 0.10 mm is beyond the resolution of the CSPG and is recorded as a trace amount of precipitation (P_t). Ye et al. (2004) recommended assigning a value of 0.1 mm, regardless of the number of trace observations per day.

In this field experiment, the different configuration of the CSPGUN, CSPGSA, CSPGPIT and CSPGDFIR have used the same P_s, P_e and P_t that have been well quantified constant value as described above. Thus the focus of the present study is the wind-induced error. Wind may be the most important factor influencing precipitation measurement in high mountain conditions.

The WMO has given Eqs.(2)-(4) for the shielded Tretyakov gauge catch ratio versus daily wind speed (W_s, m s$^{-1}$) at gauge height, and daily maximum and minimum temperatures (T_{max}, T_{min}, °C) on a daily time step for various precipitation types (Yang et al., 1995; Goodison et al., 1998). These equations can be used over a great range of environmental conditions (Goodison et al., 1998). Therefore, in this paper, the catch ratio ($CR = \frac{\text{CSPG}_X}{\text{CSPG}_{\text{DFIR}}}$, %; X denotes UN, SA or PIT. CR, %) follows their definition by using CSPGDFIR as reference.

\begin{align*}
CR_{\text{snow}} &= 103.1 - 8.67W_s + 0.37T_{\text{max}} \\
CR_{\text{mix}} &= 96.99 - 4.46W_s + 0.88T_{\text{max}} + 0.22T_{\text{min}} \\
CR_{\text{rain}} &= 100.0 - 4.77W_s^{0.56}
\end{align*}

Where CR_{snow} (%), CR_{mix} (%), and CR_{rain} (%) are catch ratios for snow, mixed precipitation, and rain, respectively; W_s is wind speed at gauge height (m s$^{-1}$); T_{max} and T_{min} are daily maximum and minimum air temperatures (°C).

The CMA stations usually observe wind speeds at 10 m height, so Yang et al. (1991) the have given Eqs.(5)-(7) for CSPG catch ratios versus daily mean wind speed W_s (m s$^{-1}$) at 10 m height are used (Yang et al., 1991). These equations are based on the huge precipitation gauge intercomparison experiment data at the Tianshan valley site.

\begin{align*}
CR_{\text{snow}} &= 100 \exp(-0.056W_s^{10}) \quad \text{for } 0 < W_s < 6.2 \\
CR_{\text{rain}} &= 100 \exp(-0.04W_s^{10}) \quad \text{for } 0 < W_s < 7.3 \\
CR_{\text{mix}} &= CR_{\text{snow}} - (CR_{\text{snow}} - CR_{\text{rain}})(T_{\text{mean}} + 2) / 4
\end{align*}

where T_{mean} is the daily mean air temperature (°C).

In this paper, two types of equations are established. One is for easy application by using 10m-height wind speed during the period of precipitation in China. They are similar to and revisions of the Eqs.(5)-(7). Another type is similar to Eqs.(2)-(4), which use daily mean wind speed at gauge height. For CSPG, the gauge height is 70
The one independent variable equations were fitted directly by using Microsoft Excel. Whereas for the equations with more independent variables, the function NLINFIT in Matlab software was used. They are both based on the least square method in mathematics (Charnes et al., 1976). The significance of the equations were evaluated by using F-test method (Snedecor and Cochran, 1989). For the simultaneous equations, the F-value and its significant value (α) could be calculated by using function LINEST and FDIST in the Microsoft Excel, respectively. If the independent variable X presents in the forms like $X^{0.5}$, $\exp(0.5X)$ and $0.5\ln(X)$ etc., its form should be revised to agree with the LINEST function. For example, the equation '$Y=a*X^{0.5}+c*\exp(d*X)+e$' should be revised as '$Y=a*X+c*X+d+e$' before using LINEST to acquire its F-value.

Wind speeds at gauge height ($W_{s0.7}$) and 10 m height (W_{s10}) were calculated by using half-hourly wind speed data at 1.5 m ($W_{s1.5}$) and 2.5 m heights ($W_{s2.5}$), according to the Monin-Obukhov theory and the gradient method (Bagnold,1941; Dyer and Bradley, 1982):

$$W_{sZ} = \frac{\ln Z - \ln Z_0}{\ln 1.5 - \ln Z_0} W_{s1.5}$$

$$\ln Z_0 = \frac{W_{s2.5} \ln 1.5 - W_{s1.5} \ln 2.5}{W_{s2.5} - W_{s1.5}}$$

Where Z denotes the anemometer installation height at 0.7 m or 10 m is 0.7 m or 10 m.

3 Results

From September 2010 to April 2015, a total of 608 precipitation events were recorded at the intercomparison site for CSPG\textsubscript{UN}, CSPG\textsubscript{SA} and CSPG\textsubscript{PIT}, respectively (Table 3). Snow occurred 84 times, mixed precipitation occurred 44 times, and rain occurred 480 times during this period. From September 2012 to April 2015, a subset of 283 precipitation events were recorded for the CSPG\textsubscript{UN}, CSPG\textsubscript{SA}, CSPG\textsubscript{PIT}, and CSPG\textsubscript{DFIR} gauges, respectively (Table 3). During this period, snow occurred 43 times, mixed precipitation occurred 29 times, and rainfall occurred 211 times.

3.1 Precipitation gauge intercomparison for rainfall

Good linear correlations are found among the four CSPG installments (Fig.2). From September 2010 to April 2015, the CSPG\textsubscript{PIT} caught 4.7% and 3.4% more rainfall than the CSPG\textsubscript{UN} and the CSPG\textsubscript{SA} respectively ((CSPG\textsubscript{PIT}-CSPG\textsubscript{UN})/CSPG\textsubscript{UN}*100; similarly hereinafter). The CSPG\textsubscript{SA} caught 1.3% more rainfall than the
CSPGUN (Table 3).

During the period from September 2012 to April 2015, the CSPGSA, CSPGPIT and CSPGDIFR caught 0.9%, 4.5% and 3.4% more rainfall than CSPGUN, respectively. The CSPGPIT and the CSPGDIFR caught more 3.6% and 2.5% rainfall than the CSPGSA, respectively. Whereas the CSPGDIFR caught 1.0% less rainfall than the CSPGPIT (Table 3, Fig.2). Comparative studies indicate that CSPGPIT catches more rainfall and total P than the CSPGDIFR or the other gauges at the experiment site (Table 3, Fig.2).

3.2 Precipitation gauge intercomparison for mixed precipitation

From September 2010 to April 2015, a total of 44 mixed precipitation events were observed. As shown in the Table 3, the CSPGPIT also caught the most mixed P among the gauges. Good linear correlations are observed among the gauges (Fig.3) too. The CSPGPIT caught 1.1 mm more mixed precipitation than the CSPGDIFR in the near three successive years. The linear relationship is statistically significant with an R^2 value as about 0.98 (Fig.3f). Thus the CSPGPIT instead of the CSPGDIFR could be selected as the reference gauge for the CSPGUN and the CSPGSA at the experimental site.

From September 2010 to April 2015, a total of 44 mixed precipitation events were observed. The CSPGPIT caught 12.1% and 5.6% more mixed P than the CSPGUN and the CSPGSA, respectively. The CSPGSA caught 6.1% more mixed P than the CSPGUN (Table 3). From September 2012 to April 2015, the CSPGSA–CSPGPIT and CSPGDIFR–CSPGPIT caught 7.7%, 15.6% and 14.2% more mixed P than the CSPGSA, respectively. The CSPGPIT and the CSPGDIFR caught more 7.3% and 6.0% mixed P than the CSPGSA, respectively. Whereas the CSPGDIFR caught 1.2% less mixed P than the CSPGPIT (Table 3).

Good linear correlations are observed among the gauges (Fig.3). The CSPGPIT caught 1.1 mm more mixed precipitation than the CSPGDIFR in the near three successive years. The linear relationship is statistically significant with an R^2 value as about 0.98 (Fig.3f). Thus the CSPGPIT instead of the CSPGDIFR could be selected as the reference gauge for the CSPGUN and the CSPGSA at the experimental site.

3.3 Precipitation gauge intercomparison for snowfall
From September 2010 to April 2015, a total of 84 snowfall events are observed. The CSPG_PIT caught 21.0% and 6.4% more snowfall than the CSPG_UN and the CSPG_SA, respectively. The CSPG_SA caught 13.7% more snowfall than the CSPG_UN (Table 3). During the period from September 2012 to April 2015, the CSPG_SA, CSPG_PIT and CSPG_DIFF caught 11.1%, 16.0% and 20.6% more snowfall than the CSPG_UN, respectively. The CSPG_PIT and the CSPG_DIFF caught more 4.4% and 8.5% snowfall than the CSPG_SA, respectively (Table 3). Good linear correlations are also observed between the CSPG_DIFF and each of the other three gauges (Fig.4). From Fig.4f, there is a linear correlation existed between the CSPG_PIT and the CSPG_DIFF (CSPG_DIFF = 1.029CSPG_PIT, R^2 = 0.994). Although the CSPG_DIFF caught 3.9% more snowfall than the CSPG_PIT (Table 3), the difference of total snowfall (43 events) between the CSPG_DIFF and the CSPG_PIT was only about 3.4 mm (Table 3). This suggests that the CSPG_PIT could be used as the reference gauge for snow precipitation events at the experiment site.

3.4 Catch ratio vs. wind speed

Previous studies showed that wind speed during the precipitation period is the most significant variable affecting gauge catch efficiency (Metcalfe and Goodison, 1993; Yang et al., 1995; Goodison et al., 1998). As described above, the wind-induced error of CSPG measurement has not been well tested. Because the CMA stations observe wind speeds at 10 m height, so the CSPG_UN and the CSPG_SA adjustment equations for single precipitation event are established with 10 m height wind speeds during the period of precipitation. On daily scale, the adjustment equations similar to Eqs.(2)-(4) are also established, based on the daily mean wind speed data at gauge height (for the CSPG, it is 0.7m.) and air temperature data.

To minimize ratio scatter of among different gauges, precipitation events greater than 3.0 mm are normally selected in the ratio vs. wind analysis (Yang et al. 1995; Yang et al., 2014). In the Hulu watershed, most snowfall and mixed precipitation events are less than 3.0 mm. For this reason the limit was decreased, single or daily snowfall and mixed precipitation greater than 1.0 mm was chosen to use in this chapter. Whereas for the rainfall, precipitation greater than 3.0 mm was selected. The numbers of the chosen precipitation events are shown in Table 4. The catch ratio vs. wind speed relations of different precipitation types are summarized in Table 4 too. As shown in Table 4, all the CRPIT/DFIR vs. W_0.7 or W_1.0 relations do not pass the F-test when α=0.10. Therefore, only
CR\textsubscript{UN/DFIR} and CR\textsubscript{SA/DFIR} vs. wind speed relations are discussed in the following text.

3.4.1 Rainfall catch ratio vs. wind speed

Fig. 5 presents scatter plots of the CR\textsubscript{UN/DFIR} or CR\textsubscript{SA/DFIR} vs. wind speed. The CRs vary from 80% to 110%. With increasing wind speed, the CRs decreased slightly. The following two equations (10) and (11) could be used to adjust the rainfall event data from the CSP\textsubscript{UN} and CSP\textsubscript{SA}, respectively. They both pass the F-test when \(\alpha<0.1\) (Table 4). They are significant at 0.06 and 0.01 level, respectively (Table 4). As described in Chapter 2.2, to calculate the F-value of this kind of equation using \textsc{LINEST} function in Microsoft Excel, the \(W^3\) and \(W^2\) should be converted into new variables \(X_1=W^3\) and \(X_2=W^2\) firstly. Other forms such as the power law and exponential expressions are treated in a similar way.

\[
\begin{align*}
CR\textsubscript{UN/DFIR,Rain} &= 0.181W_{s10}^3 - 2.028W_{s10}^2 + 5.983W_{s10} + 92.24 & 0<W_{s10}<7.4 \\
CR\textsubscript{SA/DFIR,Rain} &= 0.188W_{s10}^3 - 2.027W_{s10}^2 + 5.554W_{s10} + 94.27 & 0<W_{s10}<7.4
\end{align*}
\]

Where CR\textsubscript{UN/DFIR,Rain} and CR\textsubscript{SA/DFIR,Rain} is the rainfall catch ratio (%) of the CSP\textsubscript{UN} and the CSP\textsubscript{SA}, respectively, \(W_{s10}\) is the wind speed at 10m height during the period of rainfall (m s\(^{-1}\)).

Fig. 5 about here

On daily scale, the best relationships between rainfall CRs and wind speed at gauge height \((W_{0.7})\) are also the 3rd order cubic functions, but they don't pass the F-test even \(\alpha=0.25\) (Table 4).

3.4.2 Mixed precipitation catch ratio vs. wind speed

For the mixed precipitation events, the CR\textsubscript{UN/DFIR,Mixed} and CR\textsubscript{SA/DFIR,Mixed} vs. \(W_{s10}\) relations are exponential (Table 4, Fig.6). The CRs vary largely from about 60% to 120%. For the CSP\textsubscript{UN}, the exponential relationship Eq. (12) passes the F-test when \(\alpha<0.10\), whereas for the CSP\textsubscript{SA}, the Eq.(13) doesn't pass but has a \(\alpha\) value of about 0.16 (Table 4).

\[
\begin{align*}
CR\textsubscript{UN/DFIR,Mixed} &= 102.9e^{-0.07W_{s10}} & 0<W_{s10}<5.9 \\
CR\textsubscript{SA/DFIR,Mixed} &= 102.4e^{-0.05W_{s10}} & 0<W_{s10}<5.9
\end{align*}
\]

Fig. 6 about here
On daily scale, the best relationships between mixed precipitation CRs and wind speed at gauge height ($W_{v0.7}$) are power law expressions (Table 4, Fig.6). Similarly, for the CSPG$_{UN}$, the Eq. (14) passes the F-test when α<0.10, whereas the Eq.(15) doesn't with a α value of about 0.12 (Table 4).

$$CR_{UN/DFIR,Mixed} = 88.49W_{v0.7}^{-0.20} \quad 0<W_{v0.7}<2.9 \quad (14)$$

$$CR_{SA/DFIR,Mixed} = 93.64W_{v0.7}^{-0.12} \quad 0<W_{v0.7}<2.9 \quad (15)$$

From Eq. (3), air temperature may also affect the mixed precipitation CRs on daily scale. Eqs. (16)-(17) are established as follows. However, these two new equations don't pass the F-test when α=0.20.

$$CR_{UN/DFIR,Mixed} = 13.83W_{v0.7}^{-4.91} + 1.25T_{max} - 0.88T_{min} + 62.21 \quad \alpha=0.20 \quad (16)$$

$$CR_{SA/DFIR,Mixed} = 10.74W_{v0.7}^{-4.74} + 0.85T_{max} - 0.18T_{min} + 76.20 \quad \alpha=0.29 \quad (17)$$

Where T_{max} and T_{min} is the daily maximum and minimum air temperature (°C), respectively.

3.4.3 Snowfall catch ratio vs. wind speed

For the snowfall events, the $CR_{UN/DFIR,Snow}$ and the $CR_{SA/DFIR,Snow}$ vs. W_{v10} relations are evident (Table 4, Fig.7).

For the CSPG$_{UN}$, the exponential relationship Eq.(18) passes the F-test when α<0.001. The Eq.(18) is similar with the Eq.(5) suggested by Yang et al. (1991). For the CSPG$_{SA}$, the power law expression Eq.(19) passes the F-test when α<0.05 (Table 4).

$$CR_{UN/DFIR,Snow} = 103.5e^{-0.09W_{v10}} \quad 0<W_{v10}<4.8 \quad (18)$$

$$CR_{SA/DFIR,Snow} = 97.35W_{v10}^{-0.05} \quad 0<W_{v10}<4.8 \quad (19)$$

On daily scale, for the CSPG$_{UN}$ and the CSPG$_{SA}$, the Eq. (20) and Eq. (21) pass the F-test when α<0.001 and α<0.10, respectively (Table 4). Eqs. (18) - (21) could be directly used to calibrate the wind-induced snowfall measurement errors for CSPG$_{UN}$ and the CSPG$_{SA}$.

$$CR_{UN/DFIR,Snow} = 96.28W_{v0.7}^{-0.32} \quad 0<W_{v0.7}<3.1 \quad (20)$$

$$CR_{SA/DFIR,Snow} = -8.011\ln(W_{v0.7}) + 97.61 \quad 0<W_{v0.7}<3.1 \quad (21)$$

Air temperature may also affect the snowfall CRs on daily scale as shown in Eq.(2). Eqs. (22)-(23) are the new equations associating with daily maximum air temperature. However, these two new equations are not better than Eqs. (20)-(21) according to their α value of F-test.
1 \[CR_{\text{UN/DFIR,Snow}} = 42.29W_{t0.7}^{-1.06} - 1.06T_{\text{max}} + 55.91 \quad \alpha = 4.2E-5 \]
2 \[CR_{\text{SA/DFIR,Snow}} = -9.46\ln(W_{t0.7}) - 0.31T_{\text{max}} + 98.76 \quad \alpha = 0.17 \]

4 Discussion

4.1 Comparison with other studies

Yang et al. (1991) carried out a precipitation intercomparison experiment from 1987 to 1992 in the valley site of Tianshan. Their results indicated that the ratios of CSPGDFIR/CSPGUN for snowfall and mixed precipitation were 1.222 and 1.160, respectively. In the Hulu watershed, the ratios of CSPGDFIR/CSPGUN for snowfall and mixed precipitation were 1.165 (Fig.4c) and 1.072 (Fig.3c), and the ratios of CSPGPIT/CSPGUN for snowfall and mixed precipitation were 1.162 (Fig.4b) and 1.082 (Fig.3b), respectively. Similar topographic features and shading induced similar lower wind speeds at both sites, which led to the similar catch ratios. For the Tianshan reference site, wind speed \(W_{t0.10} \) on rainfall or snowfall days never exceeds 6 m s\(^{-1}\) and 88% of the yearly total precipitation took place with wind speeds below 3 m s\(^{-1}\). For the Hulu watershed site, daily mean wind speeds \(W_{t0.7} \) on precipitation days never exceeded 3.5 m s\(^{-1}\), and over 98.9% of the precipitation events occurred when daily mean wind speeds were below 3 m s\(^{-1}\). During the period of precipitation, the largest wind speed at 10 m height is about 8.8 m s\(^{-1}\), and over 54.2% of the precipitation events occurred when wind speeds were below 3 m s\(^{-1}\).

As Ren et al. (2003) reported, among 30 comparison stations in China, the CSPGPIT caught 3.2% (1.1~7.9%) more rainfall and 11.0% (2.2~24.8%) more snowfall than the CSPGUN. Large wind-induced differences are often observed at the western mountainous stations and in the Northeastern China. At the Gangcha station (100°08', 37°20', 3015 m) which also lies in the Qilian Mountains with similar elevations with and about 200 km far from the Hulu watershed site, the CSPGPIT caught 7.9% more rainfall and 16.8% more snowfall than the CSPGUN from 1992 to 1998. In our study, the CSPGPIT got 4.7% more rainfall, 21.0% more snowfall, and 12.1% more mixed precipitation than the CSPGUN from September 2010 to April 2015 (Table 3). The outcome presented in this study is somewhat different from the Ren et al. (2003) presented due to the different wind regime.

4.2 Possibility of the CSPGPIT as a reference for solid precipitation

The pit shield is the WMO reference configuration for liquid precipitation measurements and the DFIR is the reference configuration for solid precipitation measurements (Sevruk et al., 2009). In this study, the CSPGPIT measures more rainfall and mixed precipitation than the CSPGDFIR. For the snowfall, the catch ratio for the
CSPGPIT is 0.96, close to the CSPGDFIR catch ratio. The difference of total snowfall (43 events) between the CSPGPIT and the CSPGDFIR is only about 3.4 mm from September 2012 to April 2015 at the Hulu watershed site. Thus the CSPGPIT could serve as a reference for liquid and solid precipitation in the environment similar to the Hulu watershed site. The pit shield is easy to transit, install, observe and maintain. It occupies only a small place and could be installed in the CMA's standard meteorological fields, but the DFIR shield is larger and should keep away from the other observations. In the mountains regions, the DFIR shield is difficult to carry and install. In addition, the pit shield is only about 150 USD, 6000 USD cheaper than the DFIR shield in China. Therefore, considering the CSPGPIT's greater simplicity and practicality, it could be more convenient for researchers and observers to use the CSPGPIT as the standard reference for snow and mixed precipitation in other locations. Precipitation collected by the CSPGPIT would be most affected when blowing or drifting snow occurred, and induce a faulty precipitation value (Goodison et al., 1998; Ren and Li, 2007). Previous studies have indicates, however, that for most of China maximum snow depths in the past 30 years have been less than 20 cm (Li, 1999), and average snow depths were less than 3 cm (Li et al., 2008; Che et al., 2008). Fig.8 shows annual snowfall amounts and annual snowfall proportion distributions for 644 meteorological stations in China from 1960 to 1979, indicating that snowfall concentrated in the south-eastern Tibetan Plateau, northern Xinjiang province and north-eastern China. Statistical analysis indicates that for more than 94% of stations, solid precipitation is less than 15% of the annual precipitation amount. Ren and Li (2007) has reported, among the 29276 precipitation events, there are only 784 blowing or drifting snow events accounting to about 2.7% at the 30 stations over China. These blowing or drifting snow events mostly occur in the south-eastern Tibetan Plateau, northern Xinjiang province and north-eastern China (Ren et al., 2003). The applicable regions for the CSPGPIT and the CSPGDFIR as reference gauges are shown in Fig.9 based on CMA snowfall and snow depth data.

4.3 Uncertainties of the experiment

Although the measurements procedure is based on the CMA's criterion, the manual observation has low frequency, and as a result, some precipitation events are summarized as one event especially in the evening. The automatic meteorological tower can observe half-hourly precipitation and wind speeds during the precipitation period, but the CSPGUN, CSPGSA, CSPGPIT and CSPGDFIR are observed twice per day. In this field experiment, the precipitation phase is also discriminated by the observers. This method is somewhat rough though it has been
the standard way since the 1950s at the CMA stations.

The used wind speeds at gauge height and at the 10 m height are not observed directly, but they are calculated from the observed data at 1.5 m and 2.5 m heights according to the Monin-Obukhov theory and the gradient method (Eqs. (8)-(9)). Although this method is widely used, it is effective only under neutral atmospheric conditions. During the precipitation period from September 2012 to April 2015, Z_0 is about 0.06 m of the average but it varies from near zero to 0.67 m. As shown in Fig. 10, about 68.9% and 95.1% of Z_0 is lower than 0.05 m and 0.25 m, respectively. In the occasional cases that Z_0 is very large, the Z_0 is arbitrarily assigned a value (1/2 of grass height at the site).

Fig. 10 about here

5 Conclusions

The precipitation intercomparison experiment in the Hulu watershed indicates that the CSPGPIT catches more rainfall, mixed precipitation and total precipitation than the CSPGDFIR. From most to the least rainfall and mixed precipitation, it can be ordered as follows: CSPGPIT $>$ CSPGDFIR $>$ CSPGSA $>$ CSPGUN. While in the rainy season, it follows the rule that of better wind-shield catch with more snow, and they can be ordered: CSPGDFIR $>$ CSPGPIT $>$ CSPGSA $>$ CSPGUN. The wind-induced bias of CSPGSA and the CSPGUN are well tested, and the most adjustment equations could be used. They would help to improve the precipitation accuracy in China.

In the regions with little snowfall such as the south and central part of China, and the regions with similar climate and environment to the Hulu watershed site, the CSPGPIT could be used as the reference gauge considering its highest catch ratio, simplicity and low cost and less maintenance requirements. In north-east China, northern Xinjiang province and southeastern Tibetan Plateau where snowfall often occurs, the best choice for reference gauge would be the CSPGPIT for rainfall and CSPGDFIR for snowfall observations.

Acknowledgments

This paper was mainly supported by the National Basic Research Program of China (2013CBA01806) and the National Natural Sciences Foundation of China (91025011, 41222001, 91225302 and 41401078).

References

Table 1. Monthly climate values at the experimental site (2010-2012).

<table>
<thead>
<tr>
<th>Element</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Yearly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly precipitation P (mm)</td>
<td>3.5</td>
<td>2.5</td>
<td>11.0</td>
<td>8.8</td>
<td>67.7</td>
<td>69.6</td>
<td>87.1</td>
<td>11.6</td>
<td>57.7</td>
<td>24.0</td>
<td>2.7</td>
<td>1.0</td>
<td>447.2</td>
</tr>
<tr>
<td>Monthly mean air temperature T_{mean} (°C)</td>
<td>-4.1</td>
<td>-2.6</td>
<td>-1.5</td>
<td>0.7</td>
<td>2.3</td>
<td>3.7</td>
<td>4.2</td>
<td>4.0</td>
<td>2.7</td>
<td>0.5</td>
<td>-1.9</td>
<td>-3.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Monthly mean daily maximum air temperature T_{max} (°C)</td>
<td>-1.3</td>
<td>0.2</td>
<td>1.2</td>
<td>3.4</td>
<td>4.8</td>
<td>6.1</td>
<td>6.5</td>
<td>6.6</td>
<td>5.1</td>
<td>3.4</td>
<td>1.2</td>
<td>-0.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Monthly mean daily minimum air temperature T_{min} (°C)</td>
<td>-6.3</td>
<td>-4.9</td>
<td>-3.9</td>
<td>-1.7</td>
<td>0.2</td>
<td>1.6</td>
<td>2.3</td>
<td>1.9</td>
<td>0.6</td>
<td>-1.8</td>
<td>-4.2</td>
<td>-6.1</td>
<td>-1.9</td>
</tr>
<tr>
<td>Monthly mean wind speed at the 1.5m height $W_{1.5}$ ($m \cdot s^{-1}$)</td>
<td>0.60</td>
<td>0.65</td>
<td>0.77</td>
<td>0.85</td>
<td>0.81</td>
<td>0.66</td>
<td>0.61</td>
<td>0.60</td>
<td>0.64</td>
<td>0.60</td>
<td>0.69</td>
<td>0.65</td>
<td>0.68</td>
</tr>
<tr>
<td>Monthly mean wind speed at the 2.5m height $W_{2.5}$ ($m \cdot s^{-1}$)</td>
<td>0.60</td>
<td>0.67</td>
<td>0.81</td>
<td>0.92</td>
<td>0.88</td>
<td>0.72</td>
<td>0.68</td>
<td>0.67</td>
<td>0.72</td>
<td>0.66</td>
<td>0.73</td>
<td>0.67</td>
<td>0.73</td>
</tr>
<tr>
<td>Monthly evaporation ability E_0 (mm)</td>
<td>31.6</td>
<td>47.0</td>
<td>79.4</td>
<td>124.4</td>
<td>140.9</td>
<td>155.0</td>
<td>141.7</td>
<td>127.0</td>
<td>101.6</td>
<td>75.2</td>
<td>47.3</td>
<td>31.0</td>
<td>1102.2</td>
</tr>
</tbody>
</table>

Table 2. The precipitation measurement intercomparison experiment in Qilian mountains.

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Abbreviation</th>
<th>Size (φ stand for orifice diameter and h for observation height)</th>
<th>Start date</th>
<th>End date</th>
<th>Measure time</th>
</tr>
</thead>
<tbody>
<tr>
<td>An unshielded China standard precipitation gauge (CMA, 2007a)</td>
<td>CSPGUN</td>
<td>$\varphi=20cm$, $h=70cm$</td>
<td>Jun 2009</td>
<td>Apr, 2015</td>
<td>20:00 and 08:00, LT</td>
</tr>
<tr>
<td>Single Alter shield (Struzer, 1971) around a CSPG</td>
<td>CSPGSA</td>
<td>$\varphi=20cm$, $h=70cm$</td>
<td>Jun 2009</td>
<td>Apr, 2015</td>
<td>20:00 and 08:00, LT</td>
</tr>
<tr>
<td>A CSPG in a Pit (Sevruk and Hamon, 1984)</td>
<td>CSPGPIT</td>
<td>$\varphi=20cm$, $h=0cm$</td>
<td>Sep 2010</td>
<td>Apr, 2015</td>
<td>20:00 and 08:00, LT</td>
</tr>
<tr>
<td>DFIR shield (Goodison et al., 1998) around a CSPG</td>
<td>CSPGDFIR</td>
<td>$\varphi=20cm$, $h=3.0m$</td>
<td>Sep 2012</td>
<td>Apr, 2015</td>
<td>20:00 and 08:00, LT</td>
</tr>
</tbody>
</table>
Table 3. Summary of precipitation observations at the Hulu watershed intercomparison site, 2010-2015.

<table>
<thead>
<tr>
<th>Date</th>
<th>Phase</th>
<th>No. of events</th>
<th>CSPG<sub>UN</sub> (mm)</th>
<th>CR</th>
<th>100(CSPG<sub>UN</sub> - 1)</th>
<th>100(CSPG<sub>SA</sub> - 1)</th>
<th>CSPG<sub>SA</sub> (mm)</th>
<th>CR</th>
<th>100(CSPG<sub>SA</sub> - 1)</th>
<th>100(CSPG<sub>DFIR</sub> - 1)</th>
<th>CSPG<sub>DFIR</sub> (mm)</th>
<th>CR</th>
<th>100(CSPG<sub>DFIR</sub> - 1)</th>
<th>CSPG<sub>DFIR</sub> (mm)</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 2010-</td>
<td>rain</td>
<td>480</td>
<td>1700.7</td>
<td>95.5</td>
<td>1.3</td>
<td>4.7</td>
<td>1723.4</td>
<td>96.7</td>
<td>3.4</td>
<td>1781.4</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 2015</td>
<td>mixed</td>
<td>44</td>
<td>139.9</td>
<td>89.2</td>
<td>6.1</td>
<td>12.1</td>
<td>148.5</td>
<td>94.7</td>
<td>5.6</td>
<td>156.8</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>snow</td>
<td></td>
<td>84</td>
<td>146.2</td>
<td>82.6</td>
<td>13.7</td>
<td>21.0</td>
<td>166.2</td>
<td>94.0</td>
<td>6.4</td>
<td>176.9</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 2012-</td>
<td>rain</td>
<td>283</td>
<td>1066.7</td>
<td>94.9</td>
<td>2.0</td>
<td>6.0</td>
<td>1088.4</td>
<td>96.9</td>
<td>3.9</td>
<td>1130.9</td>
<td>100.6</td>
<td>-0.6</td>
<td>1123.7</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Apr 2015</td>
<td>mixed</td>
<td>211</td>
<td>920.7</td>
<td>96.7</td>
<td>0.9</td>
<td>4.5</td>
<td>928.6</td>
<td>97.5</td>
<td>3.6</td>
<td>961.8</td>
<td>101.0</td>
<td>-1.0</td>
<td>952.2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>snow</td>
<td></td>
<td>29</td>
<td>91.1</td>
<td>78.6</td>
<td>7.7</td>
<td>15.6</td>
<td>76.6</td>
<td>94.3</td>
<td>6.7</td>
<td>82.2</td>
<td>101.2</td>
<td>-1.2</td>
<td>81.2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>43</td>
<td>74.9</td>
<td>82.9</td>
<td>11.1</td>
<td>16.0</td>
<td>83.2</td>
<td>92.1</td>
<td>4.4</td>
<td>86.9</td>
<td>96.2</td>
<td>3.9</td>
<td>90.3</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Catch ratio (CR) vs. wind speed relations at the Hulu watershed intercomparison site, 2012-2015.

<table>
<thead>
<tr>
<th>Temporal Scale</th>
<th>Phase</th>
<th>Gauges</th>
<th>Best catch ratio (CR) vs. wind speed relation*</th>
<th>P (mm)</th>
<th>No. of events</th>
<th>F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation event</td>
<td>Rain</td>
<td>CSPG<sub>UN</sub></td>
<td>$CR_{UN/DFIR,Rain}=0.181 W_{10}^2 - 2.028 W_{10}^2 + 5.983 W_{10} + 92.24$ (R^2=0.070)</td>
<td>$P>3.0$</td>
<td>103</td>
<td>$\alpha=0.06$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>SA</sub></td>
<td>$CR_{SA/DFIR,Rain}=0.188 W_{10}^2 - 2.027 W_{10}^2 + 5.554 W_{10} + 94.27 \sqrt{R^2=0.099}$</td>
<td></td>
<td></td>
<td>$\alpha=0.01$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>PIT</sub></td>
<td>$CR_{PIT/DFIR,Rain}=0.150 W_{10}^2 - 1.748 W_{10}^2 + 6.183 W_{10} + 94.20 \sqrt{R^2=0.023}$</td>
<td></td>
<td></td>
<td>$\alpha=0.50$</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>CSPG<sub>UN</sub></td>
<td>$CR_{UN/DFIR,Mixed}=102.9 e^{-0.07 W_{10}} \sqrt{R^2=0.198}$</td>
<td>$P>1.0$</td>
<td>24</td>
<td>$\alpha=0.07$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>SA</sub></td>
<td>$CR_{SA/DFIR,Mixed}=102.4 e^{-0.05 W_{10}} \sqrt{R^2=0.102}$</td>
<td></td>
<td></td>
<td>$\alpha=0.16$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>PIT</sub></td>
<td>$CR_{PIT/DFIR,Mixed}=-5.81 ln(W_{10})+106.4 \sqrt{R^2=0.023}$</td>
<td></td>
<td></td>
<td>$\alpha=0.47$</td>
</tr>
<tr>
<td></td>
<td>Snow</td>
<td>CSPG<sub>UN</sub></td>
<td>$CR_{UN/DFIR,Snow}=103.5 e^{-0.09 W_{10}} \sqrt{R^2=0.420}$</td>
<td>$P>1.0$</td>
<td>32</td>
<td>$\alpha=4.7E-5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>SA</sub></td>
<td>$CR_{SA/DFIR,Snow}=97.35 W_{10}^{-0.05} \sqrt{R^2=0.122}$</td>
<td></td>
<td></td>
<td>$\alpha=0.04$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>PIT</sub></td>
<td>$CR_{PIT/DFIR,Snow}=0.160 W_{10}^3 + 0.956 W_{10}^2 - 9.754 W_{10} + 109.9 \sqrt{R^2=0.30}$</td>
<td></td>
<td></td>
<td>$\alpha=0.30$</td>
</tr>
<tr>
<td>Daily precipitation</td>
<td>Rain</td>
<td>CSPG<sub>UN</sub></td>
<td>$CR_{UN/DFIR,Rain}=-1.400 W_{0.7}^2 + 9.403 W_{0.7}^2 - 18.22 W_{0.7} + 106.8 \sqrt{R^2=0.045}$</td>
<td>$P>3.0$</td>
<td>90</td>
<td>$\alpha=0.26$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>SA</sub></td>
<td>$CR_{SA/DFIR,Rain}=-0.924 W_{0.7}^2 + 6.525 W_{0.7}^2 - 13.47 W_{0.7} + 105.7 \sqrt{R^2=0.031}$</td>
<td></td>
<td></td>
<td>$\alpha=0.43$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>PIT</sub></td>
<td>$CR_{PIT/DFIR,Rain}=-0.952 W_{0.7}^3 + 6.37 W_{0.7}^2 - 12.62 W_{0.7} + 108.4 \sqrt{R^2=0.017}$</td>
<td></td>
<td></td>
<td>$\alpha=0.68$</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>CSPG<sub>UN</sub></td>
<td>$CR_{UN/DFIR,Mixed}=88.49 W_{0.2}^2 \sqrt{R^2=0.169}$</td>
<td>$P>1.0$</td>
<td>21</td>
<td>$\alpha=0.06$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>SA</sub></td>
<td>$CR_{SA/DFIR,Mixed}=93.64 W_{0.7} \sqrt{R^2=0.122}$</td>
<td></td>
<td></td>
<td>$\alpha=0.12$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>PIT</sub></td>
<td>$CR_{PIT/DFIR,Mixed}=101.6 W_{0.7} \sqrt{R^2=0.017}$</td>
<td></td>
<td></td>
<td>$\alpha=0.60$</td>
</tr>
<tr>
<td></td>
<td>Snow</td>
<td>CSPG<sub>UN</sub></td>
<td>$CR_{UN/DFIR,Snow}=96.28 W_{0.7} \sqrt{R^2=0.577}$</td>
<td>$P>1.0$</td>
<td>27</td>
<td>$\alpha=5.7E-6$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>SA</sub></td>
<td>$CR_{SA/DFIR,Snow}=-8.011 W_{0.7} + 97.61 \sqrt{R^2=0.111}$</td>
<td></td>
<td></td>
<td>$\alpha=0.09$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSPG<sub>PIT</sub></td>
<td>$CR_{PIT/DFIR,Snow}=-5.760 W_{0.7} + 41.64 W_{0.7}^2 - 93.05 W_{0.7} + 160.5 \sqrt{R^2=0.33}$</td>
<td></td>
<td></td>
<td>$\alpha=0.33$</td>
</tr>
</tbody>
</table>

* W_{10}-Wind speed during period of precipitation at 10 m height; $W_{0.7}$-Daily mean wind speed at gauge height (0.7 m for CSPG).
Figure 1. Precipitation gauge intercomparison experiment in the Qilian mountains, Tibetan Plateau.
Figure 2. Intercomparison plots among CSPG\textsubscript{UN}, CSPG\textsubscript{SA}, CSPG\textsubscript{PIT} and CSPG\textsubscript{DFIR} for the rainfall events from September 2010 (a, b and d) or September 2012 (c, e and f) to April 2015.
Figure 3. Intercomparison plots among CSPG\textsubscript{UN}, CSPG\textsubscript{SA}, CSPG\textsubscript{PIT} and CSPG\textsubscript{DFIR} for the mixed precipitation events from September 2010 (a, b and d) or September 2012 (c, e and f) to April 2015.
Figure 4. Intercomparison plots among CSPG_{UN}, CSPG_{SA}, CSPG_{PIT} and CSPG_{DFIR} for the snowfall events from September 2010 (a, b and d) or September 2012 (c, e and f) to April 2015.
Figure 5. Catch ratios (CRs) vs. wind speed for the rainfall event (a and b) and the daily rainfall (c and d) greater than 3.0 mm.
Figure 6. Catch ratios (CRs) vs. wind speed for the mixed precipitation event (a and b) and the daily mixed precipitation (c and d) greater than 1.0 mm.
Figure 7. Catch ratios (CRs) vs. wind speed for the snowfall event (a and b) and the daily (c and d) snowfall greater than 1.0 mm.
Figure 8. (a) Annual snowfall (mm) and (b) annual snowfall proportion (annual snowfall/annual precipitation) to total precipitation ratio in China.
Figure 9. Applicable regions for the CSPG\textsubscript{PIT} and the CSPG\textsubscript{DFIR} as reference gauges in China.
Figure 10. The surface roughness during the precipitation period from September 2012 to April 2015.