The benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation

Q. Yang1,2, M. Losch2, S. Losa2, T. Jung2,3, L. Nerger2, T. Lavergne4

1. National Marine Environmental Forecasting Center, Beijing, China
2. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
3. University of Bremen, Bremen, Germany
4. Norwegian Meteorological Institute, Oslo, Norway

Correspondence to: Q. Yang (Qinghua.Yang@awi.de)

Abstract
Recently, the European Space Agency Sea Ice Climate Change Initiative (ESA SICCI) released ice concentration data complete with error estimates that depend on space and time. These data are used in data assimilation experiments that aim at improving summer ice concentration and thickness forecasts in Arctic. The data assimilation system uses the MIT general circulation model (MITgcm) and a local Singular Evolutive Interpolated Kalman (LSEIK) filter. The effect of using sea ice concentration satellite data products with appropriate uncertainty estimates is assessed by three different experiments: in one experiment the SICCI concentration data is used with constant uncertainties; in two further experiments the same SICCI data are included along with their provided uncertainties; they differ only in imposing different minimum uncertainties. Using the observation uncertainties that are provided with the data improves the ensemble mean state of ice concentration compared to using constant data errors, but ice thickness is not affected in a systematic way. Further investigating this lack of impact on the sea ice thicknesses leads us to a fundamental mismatch between the satellite-based radiometric concentration and the modelled physical ice concentration in summer: the passive microwave sensors used for deriving the vast majority of the sea ice concentration satellite-based observations, cannot distinguish ocean water (in leads) from melt water (in ponds). New data assimilation methodologies that fully account or mitigate this mismatch must be designed for successful assimilation of sea ice concentration satellite data in summer melt conditions. In our study, thickness forecasts can be slightly improved by adopting the pragmatic solution of raising the minimum observation uncertainty, to inflate the data error and ensemble spread.

1. Introduction
For the past 30 years, the Arctic sea ice extent and volume consistently decreased in all seasons with a maximum decline in summer (Vaughan et al., 2013). This retreat has large effects on the climate system. For example, the strong contrast between the albedo of sea ice and open water has a profound effect on the Arctic surface heat budget. This retreat also influences the lower-latitude weather and climate, and can be linked to extreme events at mid-latitudes, for example, unusually cold and snowy winters in Europe, the US and Eastern Asia (Liu et al., 2012; Cohen et al., 2012), heat waves and droughts in the US and in Europe (Tang et al., 2014) and anomalous anticyclone circulation over eastern European and Russia (e.g., Semmler et al., 2012; Yang and Christensen, 2012). Apart from its relevance to local and global climate, Arctic sea ice decline opens new economic opportunities. Accurate summer sea ice forecasts are therefore urgently required to thoroughly manage the opportunities (e.g., shipping, tourism) and risks (e.g., oil spill, marine emergencies) associated with Arctic opening (Eicken, 2013).

Sea ice data assimilation (DA) plays a pivotal role in sea ice forecasting, as it can provide realistic initial model states, and continuously constrain the model state closer to reality. Data assimilation requires both reliable observed quantities and realistic uncertainty estimates. These requirements, especially regarding data uncertainties, are now also increasingly recognized by the sea ice remote sensing community. Previous studies have shown that the assimilation of sea ice concentration data can improve sea ice concentration estimates (e.g., Liseter et al., 2003; Lindsay and Zhang, 2006; Stark et al., 2008; Tietsche et al., 2013; Buehner et al., 2014) and also constrain the ice thickness and volume (Schweiger et al., 2011; Yang et al., 2015a). Given that error
estimates in the studies mentioned above were assumed to be constant, there is scope for further improvement through the use of more realistic uncertainty estimates.

In 2010, the European Meteorological Satellite Agency (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSISAF, www.osi-saf.org) released a climate data record of sea ice concentration based on SMMR and SSM/I data (Eastwood et al., 2011; Product OSI-409). This dataset features an explicit correction of the satellite signal due to weather contamination, dynamic adaptation of algorithm tie-points, and spatio-temporally varying maps of uncertainties. In fact, this OSI-409 dataset and its uncertainties were already successfully used for data assimilation purposes (e.g., Massonnet et al. 2013).

In May 2014, the European Space Agency (ESA)-Sea Ice Climate Change Initiative (SICCI) released a sea ice concentration data set with associated uncertainty estimates (Version 1.11) to the public. In many respects, the SICCI sea ice concentration dataset features an update of the algorithms and processing methodologies used for the OSISAF OSI-409 dataset and, importantly, revised uncertainty estimates (Lavergne and Rinne, 2014). At the time of writing these two datasets, SICCI and OSISAF OSI-409, are the only algorithms or products that come with a physically based sea ice retrieval uncertainty information - as opposed to an estimate of the spatio-temporal variation of the ice concentration within a certain grid area and time window. Besides the SSM/I time-series covering from 1992 to 2008, SICCI (v1.11) also includes sea ice concentration maps from AMSR-E (2002-2011). This new data set provides an opportunity to study the effect of the revised local (i.e., spatially varying) uncertainties on the assimilation of sea ice concentration data, and hence sea ice prediction skill.

In this study, we follow the approach of Yang et al. (2015a) and Yang et al. (2015b) by focusing on the summer of 2010 and using the same ensemble-based Singular Evolutive Interpolated Kalman (SEIK) filter (Pham et al., 1998; Pham, 2001) in its local form (LSEIK, Nerger et al., 2006). The SEIK filter algorithm is selected to assimilate the sea ice concentration because it is computationally efficient when applied to nonlinear models (Nerger et al., 2005), and the LSEIK filter has already been successfully used for the sea ice concentration data assimilation (Yang et al., 2015a). The purpose of the study is to quantify the impact of different uncertainty approximations on sea ice data assimilation through a comparison with independent ice concentration and ice thickness observations.

2. Forecasting experiment design

We use the MITgcm sea ice-ocean model (Marshall et al., 1997; Losch et al., 2010; Losch et al., 2014). Following Yang et al. (2015a) and Yang et al. (2015b), this study employs an Arctic regional configuration with a horizontal resolution of about 18 km and open boundaries in the North Atlantic and North Pacific (Losch et al., 2010; Nguyen et al., 2011). To explicitly include flow dependent uncertainty in atmospheric forcing, the approach by Yang et al. (2015a) was used in which UK Met Office (UKMO) ensemble forecasts from the TIGGE archive (THORPEX Interactive Grand Global Ensemble; http://tigge.ecmwf.int/) drive the ensemble of sea ice-ocean models. Each of the selected UKMO ensemble forecasts consists of one unperturbed `control' forecast and an ensemble of 23 forecasts with perturbed initial conditions. For further details the reader is referred to Bowler et al. (2008) and Yang et al. (2015a).

Following Yang et al. (2015a) and Yang et al. (2015b), the system's forecasting skills are evaluated with a series of 24h forecasts over the period of 1 June to 30 August 2010 during which the LSEIK filter is applied every day. This particular period is chosen as the open water was first found in the interior pack ice near the North Pole as early as 12 July 2010 (NSIDC, http://nsidc.org/arcticseaicenews/2010/07/). During this summer melting period the Arctic sea ice extent (area with at least 15% sea ice concentration) shrunk from 11.8 million km² on 1 June to 5.3 million km² on 30 August 2010 (data from NSIDC), which shows a clear picture of sea ice melting in Arctic summer: on 1 June, most of the Arctic Ocean was covered with closed ice pack, while on 30 August, the sea ice area was shrunk to the central Arctic and the concentration was also much reduced (Fig. 1).

The simulated and satellite observed sea ice concentration are combined using a sequential SEIK filter with second order exact sampling (Pham et al., 1998; Pham, 2001) coded within the Parallel Data Assimilation Framework (PDAF, Nerger and Hiller, 2013; http://pdaf.awi.de). The filter algorithm includes the following
phases: initialization, forecast, analysis and ensemble transformation. The sequence of forecast, analysis and ensemble transformation is repeated.

The required initial ensemble approximates the uncertainty in the initial state of the physical phenomena. Following Losa et al. (2012) and Yang et al. (2015a), we used a model integration driven by the 24-h UKMO control forecasts over the period of 1 June to 31 August 2010 to estimate the initial state error covariance matrix of sea ice concentration and thickness. The leading Empirical Orthogonal Functions (EOFs) of this covariance matrix representing the model variability are transformed by the second-order exact sampling to generate the initial ensemble of ice concentration and thickness. An ensemble size of 23 states is chosen to match with the ensemble size of UKMO perturbed forcing. In the forecast phase, all ensemble states are dynamically evolved in time with the fully nonlinear sea ice model driven by the UKMO ensemble atmospheric forcing. The analysis step combines the predicted model state with the observational information and computes a corrected state every 24 hours. The error covariance matrix and ensemble of model state are also updated. With the SEIK filter as a reduced-rank square-root approach, the updated ensemble samples the analyzed model uncertainties according to the leading EOFs.

The SEIK analysis is performed locally for each water column of the model surface grid by assimilating the observational information only within a radius of 126 km (~7 model grid points). Within the radius, we weighted the observations assuming quasi-Gaussian (Gaspari and Cohn, 1999) dependence of the weights on the distance from the analyzed grid point (see Janjić et al., 2012, Losa et al., 2012). As the atmospheric errors are already explicitly accounted for by the ensemble forcing, an ensemble inflation simulating model errors is not needed in this LSEIK configuration (Yang et al., 2015a).

Two daily sea ice concentration data sets are used in this study. The SICCI fields from AMSR-E (Lavergne and Rinne, 2014; http://icdc.zmaw.de/projekte/esa-cci-sea-ice-ecv0.html) are used in the data assimilation. This product consists of daily fields provided on a 25 km polar-centered EASE2 grid (Brodzick et al. 2012). In the SICCI data set, the North Pole data gap is filled by interpolation, and daily maps of total standard error (the sum of algorithm uncertainties and smear uncertainties which refers to the representative error on a different grid resolution) are provided. The ice concentration data used for comparison are from the National Snow and Ice Data Center (NSIDC; Cavalieri and others, 2012; http://nsidc.org/data/docs/daac/NSIDC0051_gsfce Seaice.gd.html). This product also consists of daily fields with 25 km grid spacing on a polar stereographic projection. For summer 2010, the NSIDC ice concentration fields are derived from a different passive microwave instrument (SSMIS onboard DMSP F-17) and with a different algorithm (NASA-Team). We note that both the SICCI and NSIDC products are computed from channel combinations of relatively similar passive microwave instruments and that they cannot be regarded as strictly independent. Using a different instrument and a different algorithms is nevertheless often the best we can use for passive microwave sea ice concentration data.

Currently, satellite-based observations of ice thickness are a challenge (Kwok and Sulsky, 2010; Kern et al. 2015), and there are very few reliable summer sea-ice thickness products available. Instead of remote-sensing data we compare our simulation results to measurements of sea ice draft from the Beaufort Gyre Experiment Project (BGEP) Upward Looking Sonar (ULS) moorings located in the Beaufort Sea (BGEP_2009A, BGEP_2009D; http://www.whoi.edu/beaufortgyre; see Fig. 1 for the locations). The error in ULS measurements of ice draft is estimated as 0.1 m (Krishtosh and Proshutinsky, 2006). Following Rothrock et al. (2008), drafts are converted to thickness by multiplying by a factor of 1.1. It should be noted that different ice types have different effects on the draft-thickness conversion, as we have not any information of ice types so these effects are ignored in this study.

Three experiments, which mainly differ in the way uncertainties are represented, form the backbone of this study:

1. LSEIK-1: SICCI sea ice concentration data are assimilated with a constant uncertainty value of 0.25. e.i., the observation errors are assumed to be Gaussian distributed with standard deviations (STD) of 0.25.

This constant uncertainty value is larger than the measurement error to account for a representation error which due to the used projection of the observation to the model space.
2. LSEIK-2: Same as LSEIK-1 but using the uncertainty fields provided with the SICCI product (see Figure 2). A minimum uncertainty of 0.01 is imposed to avoid complications due to divisions by very small numbers.

3. LSEIK-3: Same as LSEIK-2, but with a minimum uncertainty of 0.10.

To reflect the uncertainties in the interpolated or possibly less accurate sea ice concentration data from SICCI (e.g., over the data-void North Pole), a constant uncertainty of 0.30 is assigned in these regions for all experiments.

The original observational data uncertainties of ice concentrations that are provided with the SICCI data set and used in LSEIK-2 and LSEIK-3 are displayed in Fig. 2. In Fig 2, we show the provided observation uncertainties on 1 June, 16 June, 1 July, 16 July, 1 August and 16 August 2010. The uncertainties are about 0.05 over packed ice and open water, but larger uncertainties up to and beyond 0.3 are present at the ice edge, and region of intermediate ice concentration values. The SICCI total uncertainties are indeed the sum of two components, one characterizing the algorithm uncertainties, and the other measuring the uncertainties due to representativity of 25 km daily averages, geo-location and instrument foot-print mismatch (Lavergne and Rennie, 2014). The second component to the total uncertainties is only pronounced in areas of gradients in the sea ice concentration observations – typically at the ice edge –, and amount for the inability of such coarse resolution satellite observations to accurately locate sea ice edge. Should the SICCI sea ice concentrations be assimilated in models with significantly better spatial resolution, the enlarged uncertainties allow the model to freely locate its ice edge within the 25×25 km grid cells showing intermediate ice concentration values in the data.

3. Results

Figure 3 compares the root mean square error (RMSE) for ensemble mean ice concentration forecasts with and without data assimilation with respect to the assimilated SICCI (Fig. 3a) and the non-assimilated NSIDC (Fig. 3b) ice concentration for the period 1 June to 30 August 2010. Note that Fig. 3 reports only the RMSE for grid location where the satellite products report and ice concentration lower than 0.35. These are thus mostly location along the ice edge. Fig. 3 thus mostly assesses how the data assimilation experiments constrain the envelope of Arctic sea ice, not the interior (cyan color on Fig. 1). The reason for choosing this range is that all sea ice concentration products from passive microwave instruments have challenges with high concentration values in the summer (Ivanova et al., 2015). In such a case, documenting that the assimilated state is closer to the NSIDC product is not very conclusive, since NSIDC and SICCI products are probably likewise challenged at high concentration values. Looking away from the ice concentration values and focusing on the outskirt of the sea ice cover make the conclusions somewhat more robust as the influence of melt-ponds is reduced, and the approaches over open water are different in both products (weather filters in NSIDC and explicit correction for atmosphere perturbations for SICCI). It should be also noted that for this comparison, the observations are linearly interpolated to the model grids. Such interpolation could lead to small local changes in sea ice concentration, and the related biases are not discussed in this study.

All the data assimilation experiments reduce deviations of the forecasted ice concentration from the satellite-based data sets. The RMSE temporal evolutions are associated with the number of available data points that can be used for comparison or with surface forcing. Compared to the free run without data assimilation, mean RMSE of LSEIK-1, LSEIK-2 and LSEIK-3 ensemble mean forecasts with respect to the SICCI data are reduced from on average, 0.56 to 0.18, and 0.07, 0.16, respectively. Similarly, the RMSE with respect to the NSIDC data are reduced from 0.55 to 0.20, 0.13 and 0.19. At all times, LSEIK-2 and LSEIK-3, using the SICCI-provided uncertainty estimates and adjusted minimum uncertainties, agree better with both the assimilated SICCI and non-assimilated NSIDC observations than LSEIK-1, which employs a constant uncertainty. Furthermore, it is worth pointing out that LSEIK-2, with the SICCI-provided uncertainties, agrees best with both SICCI and NSIDC observations. This shows that the forecasting system produces a better ensemble mean state for sea ice concentration when the full range of uncertainties provided with the satellite observations are used.

The time series of daily 24-hr forecast of sea ice thickness are compared to in-situ ULS-observations BGEP_2009A (Fig. 4a) and BGEP_2009D (Fig. 4b). Note, that the numerical model carries mean thickness
The observed thickness is multiplied by SICCI or NSIDC local ice concentration to arrive at the observed ULS-SICCI or ULS-NSIDC mean thicknesses shown in Fig. 4. Although there are some small differences between ULS-SICCI or ULS-NSIDC, both reveal a very similar variation: At BGEP_2009A, the mean thickness on 1 June was about 2.5m. With ice melting, the thickness was rapidly reduced in July, and reached about 0.2m on 30 August (Fig. 4a). Similarly, the mean thickness at BGEP_2009D was about 3.5m on 1 June and was reduced to less than 0.1m on 30 August (Fig. 4b). All forecasts with data assimilation show improvements over the free-running MITgcm after late July. The ice thickness RMSE with respect to ULS-SICCI at BGEP_2009A has been reduced from 0.86m in the free model run to 0.43m in LSEIK-1, 0.61m in LSEIK-2, and 0.43 m in LSEIK-3 (Table 1). Similarly, the RMSE with respect to ULS-SICCI at BGEP_2009D has been reduced from 0.93m in the free model run to 0.55m in LSEIK-1, 0.51m in LSEIK-2, and 0.59m in LSEIK-3 (Table 1). By using the original SICCI uncertainty, LSEIK-2 gives a good agreement with the in-situ observations at BGEP_2009D (Fig. 4b), but over-estimates the mean sea ice thickness at BGEP_2009A (Fig. 4a), especially from mid-July to mid-August. By imposing a minimum uncertainty of 0.10 in the original uncertainties, the LSEIK-3 thickness agrees better with the BGEP_2009A data, and is basically equivalent to LSEIK-1. The reason is discussed in the following section.

4. Discussion
Based on the recently released SICCI sea ice concentration data that provides uncertainty estimates, a series of sensitivity experiments with different data error statistics have been carried out to test the impact of sea ice concentration uncertainties in data assimilation. Compared to a data assimilation configuration with constant uncertainty of 0.25, the data assimilation of SICCI data with provided uncertainties can give a better short-range ensemble mean forecasts for sea ice concentration in summer. For ice thickness forecasts the influence of observational uncertainties is ambiguous (beneficial in one case while seemingly detrimental in another). As there is still no available satellite based sea ice thickness data in summer, the ice thickness validation in this study is only based on two local ULS based observations. Also because we calculate the mean ice thickness using the local SICCI or NSIDC sea ice concentration data which is not real and certainly has potential bias, this introduces further uncertainties to the thickness calculations.

The main message from Fig. 3 is in fact the high sensitivity of the data assimilation to the observation uncertainties can be explained by the employed (atmospheric) model and data error statistics in the LSEIK assimilation system. Although we have not directly included the model errors due to the possible suboptimal sea ice internal parameters, the ensemble forcing approach used here was shown to be very effective at representing model uncertainty associated with atmospheric forcing fields (Yang et al. 2015a). Given this high sensitivity, and given that observation uncertainties that are prescribed by data assimilation teams (LSEIK-1 and LSEIK-3) perform worse than observation uncertainties derived by the data producers, Fig. 3 clearly supports that data providers do compute and deliver data uncertainties along with their products.

The ensemble-represented standard deviations (STDs) of sea ice concentration for LSEIK-2 turn out to be relatively small. For example, on 30 August 2010, most of the STDs in the Arctic central area and the sea ice edge area are less than 0.01 and 0.03, respectively (Fig. 5c). This means that all members are very close to the ensemble mean and the data assimilation will have only little effect. LSEIK-3 has a similar spread distribution pattern of higher STDs in the sea ice edge area and lower STDs in the concentrated central ice area but overall higher STDs than LSEIK-2. Together with the fact that LSEIK-2 does not fit the thickness observations as well as LSEIK-3, this suggests that the ensemble forecast spread for sea ice concentration is too low and cannot reflect the uncertainty. As only observations of sea ice concentration are assimilated, sea ice thickness is influenced indirectly through the data assimilation through the point-wise covariance between the ice concentration and thickness, thus through a linear update. Here, the very small sea ice concentration variance leads to a very small sea ice thickness spread (Fig. 6b). This probably explains why the LSEIK-2 system is not very effective at improving the sea ice thickness estimates while LSEIK-3 does somewhat better. The increased spread in the sea ice concentration allows the system to better represent the uncertainties and leads to a larger ice thickness spread (Fig. 6c). The sea ice thickness forecasts are improved accordingly.
The relative enhanced skill of sea ice thickness forecasts by LSEIK-3 with respect to LSEIK-2, does thus point to a possible issue with assimilating the summer SICCI ice concentration with the provided uncertainties. At first sight, the data uncertainties in summer sea ice pack seem to be too low (Fig. 2). For example, on 16 July 2010 when surface ice melting prevails and the microwave radiometry based ice concentration estimates are known to underestimate the physical sea ice cover (Ivanova et al. 2015), the provided uncertainties at the sea ice pack area are still lower than 0.06 with few regions exhibiting values around 0.1 (Fig. 2d).

In fact, Ivanova et al., (2015, section 5.3 "Melt ponds") report that AMSR-E and SSM/I, like all other passive microwave sensors, cannot distinguish ocean water (in leads) from melt water (in ponds) because of the very shallow penetration depths of the microwave signal in water. Therefore, these radiometric sea ice concentrations are closer to one minus the open water fraction (ponds and leads), than to the physical sea ice concentration in our models. This mismatch between the observed and modelled ice concentration (radiometric vs. physical) does not exist in winter when there is no surface melting. But in summer melt conditions, the observed ice concentration includes an unknown area of pond water. The provided uncertainties are not larger since the radiometric concentration is not more uncertain. This mismatch results in a systematic difference between the two quantities (the physical concentration is larger than the radiometric concentration) that cannot be fully mitigated by enlarged standard deviations of a Gaussian uncertainty model in Ivanova et al. (2015). The influence of melt-ponds on the accuracy of the SICCI dataset is documented in Lavergne and Rinne (2014, section 2.2.1.1 "summer melt-ponding").

This mismatch between the measured and modelled quantities calls for adopting more advanced data assimilation methodologies, e.g. embedding a matching relation in form of an observation operator, that would necessarily include modelled melt pond fraction, for successful assimilation of sea ice concentration satellite observations (from passive microwave instruments). Given the scope of this study and the comparisons with the in-situ BGEP ice thickness, the solution implemented in LSEIK-3, that is to enlarge the observation uncertainties using a minimum value of 0.10, is a pragmatic but effective approach.

5. Conclusion
In this study, we assimilate the summer SICCI sea ice concentration data taking into account the data uncertainties provided by the distributors. Even with a constant data uncertainty for the SICCI data, comparing the assimilated SICCI and non-assimilated NSIDC ice concentration and BGEP in-situ thickness data, its assimilation results in better estimates of the sea ice concentration and thickness. The estimates are further improved when the SICCI-provided uncertainty estimates are taken into account.

However, it was found that our data assimilation system cannot give a reasonable ensemble spread of sea ice concentration and thickness if we use the provided uncertainty directly. This is because 1) there is a mismatch between the summer sea ice concentration as observed by the passive microwave sensors (radiometric concentration) and that simulated by our model (physical concentration), and 2) the provided observation uncertainties are not enlarged to accommodate this mismatch. A simple and pragmatic approach appears to bypass this by imposing a minimum threshold value on the provided uncertainties in summer. Fully resolving the mismatch calls for more research, for example by considering melt-pond cover and evolution in the models, and using observation operators in the data assimilation schemes.

Acknowledgements
We thank ESA’s Sea Ice Climate Change Initiative (SICCI) and the OSISAF High Latitude Processing Centre for providing the ice concentration data, as well as the Woods Hole Oceanographic Institution for the provision of sea ice draft data. The UKMO ensemble forecasting data were accessed through the TIGGE data server in European Centre for Medium-Range Weather Forecasts (ECMWF). This study is supported by the BMBF (Federal Ministry of Education and Research, Germany) - SOA (State Oceanic Administration, China) Joint Project (01DO14002) and the National Natural Science Foundation of China (41376005, 41376188). We thank the editor and two anonymous reviewers for constructive comments that helped improve the manuscript.
References


Ivanova, N. and co-authors.: Satellite passive microwave measurements of sea ice concentration: an optimal algorithm and challenges, The Cryosphere Discuss., 9, 1269-1313, 2015 (accepted for publication in TC).


Table 1. RMSE of the four forecasting experiments from mean ice thickness calculated by the ULS moorings BGEP_2010A, BGEP_2010D and the satellite ice concentration observations. The two values refer to the calculation using two different data sets SICCI-NSIDC.

<table>
<thead>
<tr>
<th></th>
<th>BGEP_2010A</th>
<th>BGEP_2010D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MITgcm</td>
<td>0.86-0.89 m</td>
</tr>
<tr>
<td>2</td>
<td>LSEIK-1</td>
<td>0.43-0.46 m</td>
</tr>
<tr>
<td>3</td>
<td>LSEIK-2</td>
<td>0.61-0.64 m</td>
</tr>
<tr>
<td>4</td>
<td>LSEIK-3</td>
<td>0.43-0.46 m</td>
</tr>
</tbody>
</table>
Figure 1. The NSIDC (a, b) and SICCI (c, d) sea ice concentration on 1 June (a, c) and 30 August 2010 (b, d). The locations of BGEP_2009A and BGEP_2009D are shown as a square with white line and a triangle with white line, respectively.
Figure 2. The SICCI sea ice concentration uncertainty on (a) 1 June, (b) 16 June, (c) 1 July, (d) 16 July, (e) 1 August and (f) 16 August, 2010.
Figure 3. Temporal evolution of RMSE differences between sea ice concentration forecasts and the SICCI (a) and NSIDC (b) ice concentration data. The RMSE of the MITgcm free-run, LSEIK-1, LSEIK-2 and LSEIK-3 24-h forecasts are shown as gray, blue, magenta and red solid lines, respectively.
Figure 4. Evolution of mean sea ice thickness (m) at (a) BGEP_2009A and (b) BGEP_2009D Beaufort Sea from 1 June to 30 August 2010. The black solid and dashed lines show the obtained mean ice thickness using SICCI and NSIDC sea ice concentrations, respectively. The MITgcm free-run, LSEIK-1, LSEIK-2 and LSEIK-3 24 h ice thickness forecasts are shown as gray, blue, magenta and red solid lines, respectively.
Figure 5. Sea ice-concentration standard deviation for the individual grid cells as calculated from the 24-h ensemble forecasts on 30 August 2010. (a) LSEIK-1, (b) LSEIK-2, and (c) LSEIK-3.
Figure 6. Sea ice thickness standard deviation for the individual grid cells as calculated from the 24-h ensemble forecasts on 30 August 2010. (a) LSEIK-1, (b) LSEIK-2, and (c) LSEIK-3.