Dear Editor,

Hereby we submit a revised version of the manuscript entitled “The challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation” for publication in TC.

We revised the text in order to address the editor and the reviewers’ concerns. Please find our detailed responses below as well as a description of how the manuscript was improved.

With best regards,

Qinghua Yang
On behalf of the co-authors

Response to Editor
We appreciate very much the helpful comments from the editor.

In L164 you discuss the independence of the passive microwave data. But you have not used real independent ice concentration data (e.g. from MODIS) for your analysis. However, you have shown such an independent data set in Fig. 9. The MODIS melt pond data includes a field "Open water fraction" which is in fact 1-ice concentration.
AR: We thank the Editor for this constructive advice. Now we use this fully independent MODIS ice concentration data in the comparison and add one more Figure (Figure 4).

Missing references for melt pond data used in Fig. 9.:
AR: Now we added the two references and some brief introduction on this data, see section 2.
Response to reviewer 1

We appreciate very much the helpful comments from the reviewer.

Anonymous Referee #1

The authors have addressed my comments, and now I am generally satisfied with the resulting version of the paper.

There are couple of small comments below (numbers refer to the version of the text with highlighted changes):

306 – change “two” to “three”
AR: We corrected to “two local ULS and one IMB based observations”.

316-318 – I did not understand the sentence.
AR: Corrected. We deleted the sentence which didn’t add useful information.
Response to reviewer 2
We appreciate very much the constructive and helpful comments from the reviewer.

Anonymous Referee #2
The authors have substantially improved the manuscript and have answered to the reviewer's comments in a - to my opinion - convincing way.
I have only a number of minor comments left which do not need a further review by myself.
I only mention the line number L to locate my comments:

L135: "relates" --> "related"
AR: Corrected.

L166: I suggest to start this sentence with "There ..." to avoid repetition of "currently"
AR: We corrected the texts to avoid the repetition.

L169: "and or clouds" --> "or clouds"
AR: Corrected.

L169/179: I suggest to write: "During summer there are also no airborne sea ice thickness data ... (OIB) campaign flights available because these are usually carried out during spring (Kurtz ..."
AR: Corrected.

L171: "air-born" --> "air-borne"
AR: Corrected.

L172: I suggest to delete "in situ" here.
AR: Corrected.

L180: I suggest to delete the "just simply" and instead make a statement that the seasonal development of the SIT is more important for your study than absolute SIT values which are accurate to 0.1 m ... if this applies.
AR: Corrected. We removed "just simply", and added “the seasonal evolution of the ice thickness is more important than the absolute thickness values in this study”.

L183: "...IMB_2010B was used; its trajectory during ... is shown ..."
AR: Corrected.

L194: Combine with sentence before.
AR: Corrected.

L217-222 / Figure 3: Why do we see large positive differences of "forecast minus
observations" (Which I suggest to write in the caption instead of "forecast-minus-data") in the Canadian Archioalgo and some parts of the Greenland coast.

AR: The regions with large positive deviation of the forecast from observation correspond the data-void areas where the system was constrained by the observational information to the less extend.

We have corrected the caption of Figure 3.

L218: I suggest to add (Fig 3a) after "free-run"
The part of the sentence "The model free-run ... Arctic" could be improved. Suggestion: "The model free-run (Fig. 3a) provides considerably lower sea ice concentrations over the Arctic Ocean covered by pack ice and considerably higher sea ice concentrations over the marginal ice zones and the adjacent open water areas, while the three ..."

AR: Corrected.

L227: "reports" --> "report" or "have" or "show"

AR: Corrected.

L228: I suggest to write: "The threshold (0.35) chosen seems a bit arbitrary but indeed other values, e.g. 0.25 or 0.5 provide similar results."

AR: Corrected.

L235: I suggest to start differently / re-write "Therefore, focusing on those regions with lower sea ice concentrations and a potentially lower influence by melt ponds is likely enhancing the robustness of our results. In addition, the two data sets have a different treatment of the open water area adjacent to the ice cover. For example ..."

AR: Corrected.

L249: " ... are reduced from an average of 0.56 to 0.18, 0.07 and 0.16, respectively."

AR: Corrected.

L258/259: I suggest to also comment on the other three images of Figure 5.

AR: We added some texts: while the free run (Fig. 6a) and LSEIK-1 (Fig. 6b), LSEIK-3 (Fig. 6d) have much smoother sea ice thickness distributions.

L283: You write that the snow sounder failed on May 7 and that because of this you only have 10 data points. I suggest to a) explain why this is a difficulty for getting the ice thickness from this data and to b) tell the reader how the SIT was derived instead.

AR: We added some texts: because its snow sounder failed on 7 May, so that ice thickness can only be computed from ice profile data that were available once a week.

L293: "have" --> "has" because it refers to "series of"

AR: Corrected.
L296/297: I would add one sentence that clearly states that you are aware that the statement in the "But the ice thickness forecast ..." might be too strong because actually you cannot evaluate it. The ULS and the IMB data give you some indication yes, but these might not be representative. Maybe adding a "likely" or a "potentially" in the "But ..." sentence would be sufficient. However, it wouldn't hurt the let the reader know that you don't like the situation and that it would be highly desirable to repeat this study for a year with more SIT observations - i.e. by more IMBs floating around or by data from an expedition or ship-based ice thickness observations etc.

AR: We added a “probably” in the "But ..." sentence. In the abstract, we corrected to: but the thickness forecast, based on the sparsely available data, appears to be degraded.

We also corrected the texts at the end of this paragraph: Also, estimating the grid-cell mean sea ice thickness using the local SICCI or NSIDC sea ice concentration data, introduces further uncertainties into the thickness calculations. For more robust results for sea ice thickness forecasts, more thickness observations for ground truth evaluation are absolutely necessary, for example, from ice floats and other in-situ data sources.

L356: I don't understand why it needs to be "modelled melt pond fraction"? Perhaps I misunderstood the sentence?

AR: To eliminate misunderstanding, we removed these texts: “that would necessarily include modelled melt pond fraction”.

Figure 1, caption, L 7: I suggest to write: " ... line, respectively, in image (a)."

AR: Corrected.

You might want to explain in the caption the difference between SICCI and NSIDC with regard to coverage along the coasts. For example does NSIDC show SIC in the waters of the Canadian Archipelago while these areas are masked white (=no data) in SICCI. The same applies to Figure 2.

AR: We added one more sentence in the caption of Figure 1: Data-void areas along the coasts are white, and these areas are larger in NSIDC than in SICCI.

We also corrected the caption of Figure 2.
The challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation

Q. Yang1,2, M. Losch1, S. Losa1,3, T. Jung2,4, L. Nerger1, T. Lavergne5

1. Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing, China
2. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
3. St. Petersburg Department of P. P. Shirshov Institute of Oceanology, St. Petersburg, Russia
4. University of Bremen, Bremen, Germany
5. Norwegian Meteorological Institute, Oslo, Norway

Correspondence to: Q. Yang (yqh@nmefc.gov.cn Qinghua.Yang@awi.de)

Abstract

Data assimilation experiments that aim at improving summer ice concentration and thickness forecasts in the Arctic are carried out. The data assimilation system used is based on the MIT general circulation model (MITgcm) and a local Singular Evolutive Interpolated Kalman (LSEIK) filter. The effect of using sea ice concentration satellite data products with appropriate uncertainty estimates is assessed by three different experiments using sea ice concentration data of the European Space Agency Sea Ice Climate Change Initiative (ESA SICCI) which are provided with a per-grid cell physically based sea ice concentration uncertainty estimate. The first experiment uses the constant uncertainty, the second one imposes provided SICCI uncertainty estimate, while the third experiment employs an elevated minimum uncertainty to account for a representation error. Using the observation uncertainties that are provided with the data improves the ensemble mean forecast of ice concentration compared to using constant data errors, but the thickness forecast, based on the sparsely available data, appears to be degraded. The ice thickness forecast is potentially degraded. Further investigating this lack of positive impact on the sea ice thicknesses leads us to a fundamental mismatch between the satellite-based radiometric concentration and the modelled physical ice concentration in summer: the passive microwave sensors used for deriving the vast majority of the sea ice concentration satellite-based observations, cannot distinguish ocean water (in leads) from melt water (in ponds). New data assimilation methodologies that fully account or mitigate this mismatch must be designed for successful assimilation of sea ice concentration satellite data in summer melt conditions. In our study, thickness forecasts can be slightly improved by adopting the pragmatic solution of raising the minimum observation uncertainty, to inflate the data error and ensemble spread.

1. Introduction

For the past 30 years, the Arctic sea ice extent and volume consistently decreased in all seasons with a maximum decline in summer (Vaughan et al., 2013). This retreat has large effects on the climate system. For example, the strong contrast between the albedo of sea ice and open water has a profound effect on the Arctic surface heat budget. This retreat also influences the lower-latitude weather and climate, and has been linked to extreme events at mid-latitudes, for example, unusually cold and snowy winters in Europe, the US and Eastern Asia (Liu et al., 2012; Cohen et al., 2012), heat waves and droughts in the US and in Europe (Tang et al., 2014) and anomalous anticyclone circulation over eastern European and Russia (e.g., Semmler et al., 2012; Yang and Christensen, 2012). Apart from its relevance to regional and global climate, Arctic sea ice decline opens new economic opportunities. Accurate summer sea ice forecasts are therefore urgently required to thoroughly manage the opportunities (e.g., shipping, tourism) and risks (e.g., oil spill, marine emergencies) associated with Arctic opening (Eicken, 2013).

Sea ice data assimilation (DA) plays a pivotal role in sea ice forecasting, as it can provide realistic initial model states, and continuously constrain the model state closer to reality. Data assimilation requires both reliable observed quantities and realistic uncertainty estimates. These requirements, especially regarding data uncertainties, are now also increasingly recognized by the sea ice remote sensing community. Previous studies have shown that the assimilation of sea ice concentration (SIC) data can improve sea ice concentration estimates (e.g., Lisæter et al., 2003; Lindsay and Zhang, 2006; Stark et al., 2008; Tietsche et al., 2013; Buehner et al., 2014) and also constrain the ice thickness and volume (Schweiger et al., 2011; Yang et al., 2015a). Given that error estimates in the studies mentioned
above were assumed to be constant, there is scope for further improvement through the use of more realistic uncertainty estimates.

In 2010, the European Meteorological Satellite Agency (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSISAF, www.osi-saf.org) released a climate data record of sea ice concentration based on SMMR and SSM/I data (Eastwood et al., 2011; Product OSI-409). This dataset features an explicit correction of the satellite signal due to weather contamination, dynamic adaptation of algorithm tie-points, and spatio-temporally varying maps of uncertainties. In fact, this OSI-409 dataset and its uncertainties were already successfully used for data assimilation purposes (e.g., Massonnet et al. 2013).

In May 2014, the European Space Agency (ESA)-Sea Ice Climate Change Initiative (SICCI) released a sea ice concentration data set with associated uncertainty estimates (Version 1.11) to the public. In many respects, the SICCI sea ice concentration dataset features an update of the algorithms and processing methodologies used for the OSISAF OSI-409 dataset and, importantly, revised uncertainty estimates (Lavergne and Rinne, 2014). At the time of writing these two datasets, SICCI and OSISAF OSI-409, are the only algorithms or products that come with a physically based sea ice retrieval uncertainty information - as opposed to an estimate of the spatio-temporal variation of the ice concentration within a certain grid area and time window (e.g., NOAA SIC CDR, Peng et al., 2013). This new data set SICCI (v1.11) provides an opportunity to study the effect of the revised local (i.e., spatially varying) uncertainties on the assimilation of sea ice concentration data, and hence sea ice prediction skill.

In this study, we follow the approach of Yang et al. (2015a) and Yang et al. (2015b) by focusing on the summer of 2010 and using the same ensemble-based Singular Evolutive Interpolated Kalman (SEIK) filter (Pham et al., 1998; Pham, 2001) in its local form (LSEIK, Nerger et al., 2006). The SEIK filter algorithm is selected to assimilate for assimilating the sea ice concentration is selected because it is computationally efficient when applied to nonlinear models (Nerger et al., 2005), and a localized implementation of such a filter allows for more detailed sampling of forecast uncertainties (Nerger et al., 2006). The LSEIK filter has already been used successfully for the sea ice concentration data assimilation (Yang et al., 2015a). The purpose of the study is to quantify the impact of different observational uncertainty approximations on sea ice data assimilation through a comparison with independent ice concentration and ice thickness observations.

2. Forecasting experiment design

We use the MITgcm sea ice-ocean model (Marshall et al., 1997; Losch et al., 2010; Losch et al., 2014). Following Yang et al. (2015a) and Yang et al. (2015b), this study employs an Arctic regional configuration with a horizontal resolution of about 18 km and open boundaries in the North Atlantic and North Pacific (Losch et al., 2010; Nguyen et al., 2011). To explicitly include flow dependent uncertainty in atmospheric forcing, the approach by Yang et al. (2015a) was used in which UK Met Office (UKMO) ensemble forecasts from the TIGGE archive (THORPEX Interactive Grand Global Ensemble) drive the ensemble of sea ice-ocean models. Each of the selected UKMO ensemble forecasts consists of one unperturbed 'control' forecast and an ensemble of 23 forecasts with perturbed initial conditions. For further details the reader is referred to Bowler et al. (2008) and Yang et al. (2015a).

Following Yang et al. (2015a) and Yang et al. (2015b), the system's forecasting skills are evaluated with a series of 24 h forecasts over the period of 1 June to 30 August 2010 during which the LSEIK filter is applied every day. This particular period is chosen as it was the first time that the open water was found in the interior pack ice near the North Pole as early as 12 July 2010 (NSIDC, http://nsidc.org/arcticseaicenews/2010/07/). During this summer melting period the Arctic sea ice extent (area with at least 15% sea ice concentration) shrank from 11.8 million km² on 1 June to 5.2 million km² on 30 August 2010 (ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02135/north/daily/data/, accessed on December 12, 2015), which shows a clear picture of sea ice melting in Arctic summer: on 1 June, most of the Arctic Ocean was covered with closed pack ice; on 30 August, the sea ice area was reduced to the central Arctic and the concentration was drastically reduced (Fig. 1).

The simulated and satellite observed sea ice concentration are combined using a sequential SEIK filter with second order exact sampling (Pham et al., 1998; Pham, 2001) coded within the Parallel Data Assimilation Framework (PDAF, Nerger and Hiller, 2013; http://pdaf.awi.de). The filter algorithm includes the following phases: initialization, forecast, analysis and ensemble transformation. The sequence of forecast, analysis and ensemble transformation is repeated.
The initial ensemble approximates the uncertainty in the initial state of the physical phenomena. Following Losa et al. (2012) and Yang et al. (2015a), we used a model integration driven by the 24-h UKMO control forecasts over the period of 1 June to 31 August 2010 to estimate the initial state error covariance matrix of sea ice concentration and thickness. The leading Empirical Orthogonal Functions (EOFs) of this covariance matrix representing the model variability are transformed by the second-order exact sampling to generate the initial ensemble of ice concentration and thickness. An ensemble size of 23 states is chosen to match with the ensemble size of UKMO perturbed forcing. In the forecast phase, all ensemble states are dynamically evolved in time with the fully nonlinear sea ice model driven by the UKMO ensemble atmospheric forcing. The analysis step k combines the predicted model state x^f_k with the observational information y_k and computes a corrected state x^o_k every 24 hours as following:

$$x^o_k = x^f_k + K_k(y_k - H_k x^f_k)$$

$$K_k = P^f_k H^T_k (H_k P^f_k H^T_k + R_k)^{-1}$$

Here K is the so-called Kalman gain that weights the observational information based on the model and data error covariance, P^f_k and R_k respectively. H_k is the observational operator that project the model variable to the observational space. In the analysis step the error covariance matrix and ensemble of model state approximating the P^o_k are updated. With the SEIK filter as a reduced-rank square-root approach, the updated ensemble of model states samples the analyzed model uncertainties according to the leading EOFs. As seen from the formulas the quality of the analysis and, therefore, the system’s prediction skills depend on the assumed prior error statistics P^o_k and R^o_k. In this respect it is worth stressing the importance of accounting for representativeness/representation errors. Such errors relate to uncertainties in the projection of model variables to the observational space. This could be any discrepancy in the used observational operator, for instance due to the fact that, for example, the model may represent the observed and data could represent the observed variable on different temporal and spatial scales (grid box averages vs. point measurements) or the model variable is not directly related to the observation. There are also deficiencies in approximating and sampling the model uncertainties. In practice, it is rather difficult to estimate a priori the representation error a priori, also due to the conditional nature of error statistics specified in data assimilation algorithms. Thus, computationally, hence, it may lead to some necessary to account for representation errors.

In Nerger et al. (2006) it was shown that implementation of the SEIK analysis in a local context (LSEIK) allows for a more accurate approximation of the forecast error covariance even within still a relatively small ensemble size. Hence, in our study the LSEIK analysis is performed for each water column of the model surface grid point by assimilating the observational information within a radius of 126 km (~7 model grid points). Within the radius, we weighted the observations assuming quasi-Gaussian (Gaspari and Cohn, 1999) dependence of the weights on the distance from the analyzed grid point (see Janjić et al., 2012, Losa et al., 2012). As the atmospheric errors are already explicitly accounted for by the ensemble forcing, an ensemble inflation simulating model errors is not needed in this LSEIK configuration (Yang et al., 2015a).

Three daily sea ice concentration data sets are used in this study. The SICCI fields from AMSR-E (Lavergne and Rinne, 2014) are used in the data assimilation. This product consists of daily fields provided on a 25 km polar-centered EASE2 grid (Brodzick et al. 2012). In the SICCI data set, the North Pole data gap is filled by interpolation, and daily maps of total standard error (the sum of algorithm uncertainties and smear uncertainties which refer to the representation error on a different grid resolution) are provided. If the provided concentration product is effected by and if the uncertainties contain the smearing error the data assimilative system accounts will account for this. The ice concentration data used for comparison are from the National Snow and Ice Data Center (NSIDC; Cavalieri et al. 1984). This product also consists of daily fields with 25 km grid spacing on a polar stereographic projection. For summer 2010, the NSIDC ice concentration fields are derived from a different passive microwave instrument (SSMI/S onboard DMSP F-17) and with a different algorithm (NASA-Team). AMSR-E has a finer native spatial resolution than SSMI/S so that, although both products are provided on a 25 km grid, the SICCI (AMSR-E based) fields have more details and appear less smoothed than the NSIDC (SSMI/S based) fields, especially in the sea ice edge area.
(Figure 1) In summary, these products have two main differences: One is that these are on different Earth grids (polar stereographic versus EASE2). The second is that AMSR E has a finer native spatial resolution than SSMIS, therefore although both products are provided on a 25 km grid the SICCI (AMSR E-based) show more details and appear less smoothed than NSIDC (SSMIS-based), especially in the sea ice edge area (Figure 1).—Strictly speaking, these differences between do not make the SICCI and NSIDC products—different Earth grids (polar stereographic versus EASE2) and finer native spatial resolution of AMSR E—do not make them independent data, because both are derived from passive microwave instruments, but we may assume that they are sufficiently different for to be treated as independent. As a third data set for comparison and discussion, we use the MODIS based sea ice concentration and melt pond fraction (MPF) data from University of Hamburg are also used in the comparison and discussion. These data are obtained with a distinct method based on measuring a surface reflectance in a various several of MODIS frequency bands and a method that is based on The surface type distribution can be obtained using the fact that different surface type (melt ponds, sea ice, snow, and open water) have different reflectance spectra values in the MODIS frequency bands. For more details on the retrievals the reader is referred to (Rosel et al., 2012) and Rosel and Kaleschke, 2012). Thus, the MODIS-derived Besides the melt ponds and the open water fractions (-OWF), which are related to SICSea ice concentrationICare also provided, then the sea ice concentration can be calculated using- asby 1 OWF minus open water fraction, are can be used as for the forecasting system’s assessment areas completely independent observations and as such we can use them for the forecasting system’s assessment to be used for the forecasting system’s assessment. The data are converted into a 12.5 km grid. Because of the strong influence of cloud cover on MODIS, these data areis provided with composites over of last 8 days on a 12.5 km resolution grid. The absolute melt pond fraction that which has not been weighed over the sea ice concentration isare used in this study. Following Kern et al. (2016), in order to account for a possible bias in MODIS-derived MPF and SIC data, we decreased the melt pond fraction estimates by 0.08% and replaced negative values of the MPF, if ever obtained, were replaced by 0. MODIS SIC was increased by 0.03%, but was set to 100% in case of exceeding and limited to a maximum of 1.000% (i.e. SIC was replaced by min(SIC+3,100%).

Currently, there are some In spite of available satellite-based observations of ice thickness, e.g., such as ICESat (Kwok et al., 2009), CryoSat-2 (Laxon et al., 2013; Zygmuntowska et al., 2014), and SMOS (Tian-Kunze et al., 2014), but currently, it is generally impossible to retrieve reliable sea ice thickness from either laser/radar altimetry or brightness temperature during summer melt conditions due to wet snow conditions and clouds. During summer there are also no available airborne summer sea ice thickness data available from Operation Ice Bridge (OIB) campaign flights available in this season as the OIB campaign only because these are usually carried out during in spring (Kurtz et al., 2013). Instead of satellite and air-borne based remote-sensing data we compare our simulation results to in-situ measurements of sea ice draft from the Beaufort Gyre Exploration -Project (BGEP) Upward Looking Sonar (ULS) moorings located in the Beaufort Sea (BGEP_2009A, BGEP_2009D; see Fig. 1a for the locations) and sea ice thickness data obtained from autonomous ice mass balance buoys (IMBs; Perovich et al., 2013). The error in ULS measurements of ice draft is estimated as 0.1 m (Krishfield and Proshutinsky, 2006). To facilitate a direct comparison with the model ice thickness, following Vinje et al. (1998) and Hansen (2013), the drafts are converted to thickness by multiplying by a factor of 1.136. This constant ratio between thickness and draft was derived by Vinje and Finnekili (1986) through hand drillings. Different ice types and ice densities have different effects on the draft-thickness conversion by introducing uncertainties and nonlinear relationships between thickness and the original drafts (Forström et al., 2011), however, but the seasonal evolution of the ice thickness is more important than the absolute thickness values in this study, so these effects are just simply ignored in this study. The IMBs use two acoustic rangefinders to monitor the position of the ice bottom and the snow/ice surface, and estimate the sea-ice thickness. The accuracy of both sounders is 5mm (Richter-Menge and others, 2006). In this study, the IMB_2010B wasere used; its trajectoryvies during summer 2010 isare shown in Figure 1.

Three experiments, which mainly differ in the way observational uncertainties are represented, form the backbone of this study:

1. LSEIK-1: Following Yang et al. (2015a), SICCI sea ice concentration data are assimilated with a constant uncertainty value of 0.25, i.e., the observation errors are assumed to be Gaussian distributed with standard deviations (STD) of 0.25, including representation errors.
2. LSEIK-2: Same as LSEIK-1 but using the uncertainty fields provided with the SICCI product are used (see Figure 2). A minimum uncertainty of 0.01 is imposed to avoid complications due to divisions by very small numbers.

3. LSEIK-3: Same as LSEIK-2, but with a minimum uncertainty of 0.10 to account for a possible representation error. To account for the aforementioned representation error that is difficult to estimate a priori, in order to find appropriate values, we have also tested some other values (0.05, 0.15, 0.20) as case studies. The results offered are very close to the results of the 0.01 value of LSEIK-2, the results for 0.20 are very close to the 0.25 constant uncertainties, while the results of 0.10 fall between the results of 0.05 and 0.20. So the value of 0.10 is chosen here to show the comparison with the experiment using the provided uncertainty.

To reflect the increased uncertainty in the extrapolation of the SICCI data into the data-void North Pole region, a constant uncertainty of 0.30 is assigned in this region for all experiments.

The original observational data uncertainties that are provided with the SICCI data set and used in LSEIK-2 and LSEIK-3 are displayed in Figure 2. In Fig 2, we show the provided observation uncertainties on 12 July, 20 July and 21 August 2010. The uncertainties are about 0.05 over packed ice and open water, but larger uncertainties up to and beyond 0.3 are present at the ice edge, and regions of intermediate ice concentration values. The SICCI total uncertainties are indeed the sum of two components, one characterizing the algorithm uncertainties, and the other measuring the uncertainties due to representativity of 25 km daily averages, geo-location and instrument foot-print mismatch (Laverigne and Rinne, 2014). The second component to the total uncertainties is only pronounced in areas of gradients in the sea ice concentration observations – typically at the ice edge – and amount for the inability of such coarse resolution satellite observations to accurately locate sea ice edge. Should the SICCI sea ice concentrations be assimilated in models with significantly better spatial resolution, the enlarged uncertainties allow the model to freely locate its ice edge within the 25×25 km grid cells showing intermediate ice concentration values in the data.

3. Results

Figure 3 shows the effect of assimilating SICCI concentration data on the simulated sea-ice concentration averaged over August 2010 (Fig. 3b, 3c and 3d). The model free run strongly overestimated sea-ice concentrations in the surrounded sea ice area and lower estimated the sea ice concentration in the central Arctic. Compared to the SICCI data, the model free-run assimilated model (Fig. 3a) provided lower sea ice concentrations over the pack ice of the Arctic Ocean covered by pack ice and considerably higher sea ice concentrations over the marginal ice zones and the adjacent open water areas. As expected, while the three LSEIK experiments well corrected the model bias towards observed (and assimilated) values. Furthermore, of these assimilation experiments, the LSEIK-2 that which uses the originally SICCI-provided uncertainties, gives the best agreement with the SICCI observations (Fig. 3c).

We also compare the predicted sea ice concentration SIC forecasting results against with the MODIS based sea ice concentration data (Figure 4). It is worth reminding, however, the reader is reminded, that these data are 8-days-composites and just 10 such composites are available over the period of interest, these data are 8-days-composites, and 10 such composites are available over the period of interest. The MODIS independent evaluation is faithful for a qualitative analysis. Only the grid cells with a cloud cover fraction smaller than 0.10 were used considered in order to minimize the influence of clouds. As seen, similarly, as before, the model free run free run overestimates the sea ice concentrations over the marginal ice zones (Fig. 4a), the three LSEIK experiments improved the forecasts (Fig. 4b, 4c and 4d). And basically LSEIK-3.2 agrees best with the MODIS sea ice concentration in the sea ice edge areas (Fig. 4c).

The differences between the three assimilated solutions are ambiguous. In some regions, for example, Fram Strait, the LSEIK-1 (Fig. 4b) and 3 (Fig. 4d) solutions have a strong bias that is corrected in LSEIK-2 (Fig. 4c), but in the western Beaufort–Sea, LSEIK-2 (Fig. 4c) appears to have larger differences to MODIS SIC than the other solutions. Averaged over the 10 composites and all the available data-points, the root mean square error (RMSE) of the three LSEIK forecasts with respect to the MODIS SIC have a same value of 0.10.

Figure 45 compares the root mean square error (RMSE) for ensemble mean ice concentration forecasts with and without data assimilation with respect to the assimilated SICCI (Fig. 45a) and the non-assimilated NSIDC (Fig. 54b).
Ice concentration for the period 1 June to 30 August 2010. Note that Figure 45 shows only the RMSE for grid locations where the satellite products report an ice concentration lower than below 0.35. These are thus, that is, mostly locations along the ice edge. The threshold (0.35) is threshold of 0.35%, chosen seems a bit is somewhat arbitrary but indeed other values, for example, 0.25 or 0.50 provide other results. Although this chosen threshold (0.35) is a bit arbitrary, but the trend of RMSE evolutions for a threshold of 0.25 and 0.50 are similar with the results of 0.35. Figure 54 thus mostly assesses how the data assimilation experiments constrain the envelope of Arctic sea ice (cyan color around concentrations of 0.35 in Fig. 1), not the interior. The reason for choosing this range is that all sea ice concentration products from passive microwave instruments have challenges with inaccurate for high summer concentration values in the summers because of the presence of melt ponds (Ivanova et al., 2015). In such a case, documenting that the assimilated state is closer to the NSIDC product is not very conclusive, since NSIDC and SICCI products are probably likewise challenges similarly affected at high concentration values. Therefore, focusing on those regions with lower sea ice concentrations and a potentially lower influence by melt ponds is likely enhancing the robustness of our results. In addition, the two data sets have a different treatment of the open water area adjacent to the ice cover differently. Looking away from the ice concentration values and focusing on the outskirt of the sea ice cover make the conclusions somewhat more robust as the influence of melt ponds is reduced, and the approaches over open water are different in both products. For example, the explicit weather correction method used in the SICCI product does not correct for cloud liquid water and cannot eliminate all weather influences on the ice concentration. In contrast the weather filter used for the NSIDC data cuts off sea ice concentration at various values (Ivanova et al., 2015). It should be also noted that for this comparison, the observations are linearly interpolated to the model grid. Such interpolation could lead to small local changes in sea ice concentration, and the related biases are not discussed in this study.

All the data assimilation experiments reduce deviations of the forecasted ice concentration from the satellite-based data sets. The RMSE temporal evolutions are associated with the number of available data points that can be used for comparison or with surface forcing. The curves of MITgcm free-runs differ between Fig. 54a and Fig. 54b because the RMSE is calculated with different sea ice concentration data sets. Compared to the free run without data assimilation, mean RMSE of LSEIK-1, LSEIK-2 and LSEIK-3 ensemble mean forecasts with respect to the SICCI data are reduced from an average of 0.56 to 0.18, and 0.07, 0.16, respectively. Similarly, the RMSE with respect to the NSIDC data are reduced from 0.55 to 0.20, 0.13 and 0.19. At all times, LSEIK-2 and LSEIK-3, using the SICCI-provided uncertainty estimates and adjusted minimum uncertainties, agree better with both the assimilated SICCI and non-assimilated NSIDC observations than LSEIK-1, which employs a constant uncertainty of 0.25. Again, it is worth pointing out that LSEIK-2, with the originally SICCI-provided uncertainties, agrees best with both SICCI and NSIDC observations. This shows that for this summer, the forecasting system produces an ensemble mean state for sea ice concentration that agrees better with the two ice concentration data sets when the full range of uncertainties provided by the SICCI satellite observation is used.

Nevertheless, the corresponding forecasts of sea ice thickness in LSEIK-2, however, are hardly plausible realistic. Figure 5c shows an unrealistically noisy sea ice thickness forecast for experiment LSEIK-2 on 30th of August, while the model free-run (Fig. 6a) and LSEIK-1 (Fig. 6b), LSEIK-3 (Fig. 6d) show a much smoother sea ice thickness distributions.

The time series of daily 24-hr forecast of sea ice thickness are compared to in-situ ULS-observations BGEP_2009A (Fig. 76a) and BGEP_2009D (Fig. 76b). Note, that the numerical model carries mean thickness (volume over area) as a variable. The observed thickness is multiplied by SICCI or NSIDC local ice concentration to arrive at the observed ULS-SICCI or ULS-NSIDC grid-cell mean thicknesses shown in Fig. 76. Although there are in spite of some small differences between ULS-SICCI and ULS-NSIDC, both reveal a very similar variation: at BGEP_2009A, the grid-cell mean thickness on 1 June was about 2.5m. With ice melting, the thickness rapidly reduced under melting conditions in July, and reached about 0.2m on 30 August (Fig. 76a). Similarly, the grid-cell mean thickness at BGEP_2009D was about 3.5m on 1 June and was reduced to less than 0.1m on 30 August (Fig. 76b). All forecasts with data assimilation show improvements over the free-running MITgcm after late July when the misfit between the observed and modeled sea ice concentrations becomes significant (Figure not shown). This is because the ice thickness is influenced by the data assimilation only through the covariances between the ice concentration and thickness (Yang et al., 2015a). The ice thickness RMSE with respect to ULS-SICCI at BGEP_2009A has been reduced from 0.86m in the free model run to 0.43m in LSEIK-1, 0.61m in LSEIK-2, and 0.43 m in LSEIK-3 (Table 1). Similarly, the RMSE with respect to ULS-SICCI at BGEP_2009D has been reduced from 0.93m in the free model run to 0.55m in LSEIK-1, 0.51m in LSEIK-2, and 0.59m in LSEIK-3 (Table 1). By using the original SICCI
uncertainty. The LSEIK-2 solution (with the original SICCI uncertainty), gives a good agreement with the in-situ observations at BGE_2009D (Fig. 76b), but over-estimates the mean sea ice thickness at BGE_2009A (Fig. 76a), especially from mid-July to mid-August. By imposing a minimum uncertainty of 0.10 in the original uncertainties, the LSEIK-3 thickness (with the modified SICCI uncertainties) agrees better with the BGE_2009A data, and is basically equivalent to LSEIK-1.

The ice thickness at IMB 2010B (Figure 76d) has only ten data points in the period 6 June to 8 August, because its snow sounder failed on 7 May, so that ice thickness can only be obtained from ice profile data that were available once a week. Similarly, the observed thickness is multiplied by SICCI or NSIDC local ice concentration to arrive at the observed IMB-SICCI or IMB-NSIDC grid-cell mean thicknesses shown in Figure 67. All the 24 h-forecasts have a positive bias of about 1.0 m on 6 June. However, all the three but all LSEIK forecasts capture the downward trend after 11 July better than the free-running model. In particular, (The LSEIK-3 solution gives the best agreement with the observations. The RMSEs from the IMB-SICCI at IMB 2010B are reduced from 0.91 m to 0.54 m with LSEIK-1, 0.73 m with LSEIK-2 and to 0.51 m with LSEIK-3. The reason is discussed in the following section.

4. Discussion

Based on the recently released SICCI sea ice concentration data that provides uncertainty estimates, a series of sensitivity experiments with different data error statistics has been carried out to test the impact of sea ice concentration uncertainties in data assimilation. Compared to a data assimilation configuration with constant uncertainty of 0.25, the data assimilation of SICCI data with provided uncertainties can give a better short-range ensemble mean forecasts for sea ice concentration in summer. But the ice thickness forecasts are potentially uncertain not improved with the observational uncertainties. As there is still no available satellite-based sea ice thickness data in summer, the ice thickness evaluation in this study are only based on two local ULS observations and one IMB based observation. Also, because we can only estimate the grid-cell mean sea ice thickness using the local SICCI or NSIDC sea ice concentration data, and this certainly has potential bias, this and introduces further uncertainties into the thickness calculations. For more robust results for sea ice thickness forecasts, more thickness observations for ground truth evaluation are absolutely necessary, for example, from ice floats and other in-situ data sources. It would be highly desirable to evaluate the thickness forecasts in the future with more ice thickness observations. Hence, by more IMBs floating around or by data from an expedition or ship-based ice thickness observations.

The main message from Figure 3.4 and 54 are that the high sensitivity of the data assimilation to the observation uncertainties can be explained by the employed (atmospheric) model and observational error statistics in the LSEIK assimilation system. Although we have not directly included the model errors due to the possible suboptimal sea ice internal parameters, the ensemble forcing approach used here was shown to be very effective at representing model uncertainty associated with atmospheric forcing fields. (Yang et al. 2015a). In fact, more reliable information on the prior model and observational error statistics increases the plausibility realism of the time evolution of the posterior forecast error statistics, which are approximated by the ensemble of model trajectories.

The spread of the ensemble representing forecast uncertainties in sea ice concentration for LSEIK-2 turns out to be relatively small. For example, on 30 August 2010, most of the ensemble-represented STDs in the Arctic central area and the sea ice edge area are less than 0.01 and 0.03, respectively (Fig. 82b). This means that all members are very close to the ensemble mean and the data assimilation will have only little effect. Comparing LSEIK-2, LSEIK-3 has a similar spatial distribution of the ensemble spread with higher STDs in the sea ice edge area and lower STDs in the concentrated central ice area but overall higher STDs. Together with the fact that LSEIK-2 does not fit the thickness observations as well as LSEIK-3, this suggests that the ensemble forecast spread for sea ice concentration is too low and cannot reflect the true uncertainty. As only observations of sea ice concentration are assimilated, sea ice thickness is influenced indirectly during the data assimilation through the point-wise covariance between the ice concentration and thickness, thus through a linear update. Here, the very small sea ice concentration ensemble variance leads to a very small sea ice thickness spread (Fig. 98b). This probably explains why the LSEIK-2 system is not very effective at improving the sea ice thickness estimates while LSEIK-3 does somewhat better. The increased ensemble spread in the sea ice concentration allows the system to better represent the uncertainties and leads to a larger ice thickness spread (Fig. 98c). The sea ice thickness forecasts are improved accordingly.
The relative enhanced skill of sea ice thickness forecasts by LSEIK-3 with respect to LSEIK-2, does thus point to a possible issue with assimilating the summer SICCI ice concentration with the provided uncertainties. At first sight, the data uncertainties in summer sea ice pack seem to be too low (Fig. 2). For example, on 12 July 2010 when surface ice melting prevails and the microwave radiometry based ice concentration estimates are known to underestimate the physical sea ice cover (Ivanova et al., 2015), the provided uncertainties at the sea ice pack area are still lower than 0.06 with few regions exhibiting values around 0.10 (Fig. 2d).

In fact, Ivanova et al. (2015, section 5.3 "Melt ponds") report that AMSR-E and SSM/I, like all other passive microwave sensors, cannot distinguish ocean water (in leads) from melt water (in ponds) because of the very shallow penetration depths of the microwave signal in water. Therefore, these radiometric sea ice concentrations are closer to one minus melt pond fractions the open water fraction (ponds and leads), than to the physical sea ice concentration in our models. This mismatch between the observed and modelled ice concentration (radiometric vs. physical) does not exist in winter when there is no surface melting (Ivanova et al., 2015). But in summer melt conditions, the observed ice concentration includes an unknown area of pond water. For example, the MODIS based melt pond distribution data clearly show the common distribution of melt ponds over the Arctic sea ice in the summer of 2010 (middle panels in Fig. 109), and it was illustrated that the passive microwave based sea ice concentration are underestimated in the pond covered area and overestimated between the melt ponds (Kern et al., 2016). The provided uncertainties are not larger since the radiometric concentration is not more uncertain. This mismatch results in a systematic difference between the two quantities (the physical concentration is larger than the radiometric concentration) that cannot be fully mitigated by enlarged standard deviations of a Gaussian uncertainty model in Ivanova et al. (2015). The influence of melt-ponds on the accuracy of the SICCI dataset is documented in Lavergne and Rinne (2014, section 2.2.1.1 "summer melt-ponding") and Kern et al. (2016).

The right panels of Figure 109 show the bias in the sea ice concentration SIC model prediction relative to the observation on 12 July, 20 July, 13 August and 21 August, 2010. The spatial distribution of the melt pond fraction (middle panels in Fig. 910) further supports the conclusion that the data assimilative system performs more plausible better realistically when the prior observational error statistics account for some representativeness errors as in experiment LSEIK-3. Figure 101 illustrates the correlation between the MODIS derived melt pond fractions and the forecast systematic uncertainties with respect to MODISSICCI ice concentration.

This mismatch between the measured and modelled quantities calls for adopting more advanced data assimilation methodologies, e.g., for example, embedding a matching relation in form of an observation operator, that would necessarily include modelled melt pond fraction, for successful assimilation of sea ice concentration satellite observations (from passive microwave instruments). Given the scope of this study and the comparisons with the in-situ BGEP and IMB ice thickness, the solution implemented in LSEIK-3, that is to enlarge the observation uncertainties using a minimum value of 0.10, is a pragmatic and effective approach. This simple approach reflects the larger uncertainties in the sea ice edge area and leads to a more reasonable spread in the model ensemble, which in turn leads to a better agreement with the observations and the information about the melt pond fractions. This simple approach can well reflect the larger uncertainties in the sea ice edge area with a more reasonable ensemble spread and agrees better with the observation given the information on the melt pond fractions.

5. Conclusion

In this study, we assimilate the summer SICCI sea ice concentration data taking into account the data uncertainties provided by the distributors. Even with a constant data uncertainty for the SICCI data, comparing the assimilated SICCI and non-assimilated NSIDC and MODIS ice concentration and BGEP/IMB in-situ thickness data, its assimilation results in better estimates of the sea ice concentration and thickness. The sea ice concentration estimates are further improved when the SICCI-provided uncertainty estimates are taken into account, but the sea ice thickness cannot be improved.

Moreover, it was found that our data assimilation system cannot give a reasonable ensemble spread of sea ice concentration and thickness if we use the provided uncertainty directly. This is because 1) there is a mismatch between the summer sea ice concentration as observed by the passive microwave sensors (radiometric concentration) and that simulated by our model (physical concentration), and 2) the provided observation uncertainties do not account for this mismatch. A simple and pragmatic approach appears to bypass this by imposing a minimum threshold value on the provided uncertainties in summer. Fully resolving the mismatch calls for more research, for example by considering
melt-pond cover and evolution in the models or observation operators in the data assimilation schemes. That would allow one to reduce the representation error. Nevertheless, the part of error related to possible uncertainties in the approximation of the forecast error statistics and discrepancies in model and data up- or downscaling may still exist and has to be considered in any data assimilation algorithm.

Acknowledgements
We thank ESA’s Sea Ice Climate Change Initiative (SICCI; http://icdc.zmaw.de/projekte/esa-cci-sea-ice-ecv0.html) and the National Snow and Ice Data Center (NSIDC; http://nsidc.org/data/docs/daac/nsidc0051_gscf_seaice.gd.html) for providing the ice concentration data, the Woods Hole Oceanographic Institution (http://www.whoi.edu/maurotgyre) for the provision of sea ice draft, the Cold Regions Research and Engineering Laboratory (http://imb.erdc.dren.mil/) for IMB data, and the Integrated Climate Data Center (http://icdc.zmaw.de) of University of Hamburg for the MODIS based melt pond and open water fraction data. The UKMO ensemble forecasting data were accessed through the TIGGE data server in European Centre for Medium-Range Weather Forecasts (ECMWF; http://tigge.ecmwf.int). This study is supported by the BMBF (Federal Ministry of Education and Research, Germany) - SOA (State Oceanic Administration, China) Joint Project (01DO14002) and the National Natural Science Foundation of China (41376005, 41376188). We thank the editor and two anonymous reviewers for constructive comments that helped improve the manuscript.

References

Table 1. RMSE of the four forecasting experiments from grid-cell mean ice thickness calculated by the ULS moorings BGEP_2009A, BGEP_2009D, IMB-2010B and the satellite ice concentration observations. The two values refer to the calculation using two different data sets SICCI-NSIDC.

<table>
<thead>
<tr>
<th></th>
<th>BGEP_2009A</th>
<th>BGEP_2009D</th>
<th>IMB-2010B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MITgcm</td>
<td>0.87-0.90 m</td>
<td>0.94-0.98 m</td>
</tr>
<tr>
<td>2</td>
<td>LSEIK-1</td>
<td>0.45-0.49 m</td>
<td>0.57-0.60 m</td>
</tr>
<tr>
<td>3</td>
<td>LSEIK-2</td>
<td>0.61-0.64 m</td>
<td>0.52-0.56 m</td>
</tr>
<tr>
<td>4</td>
<td>LSEIK-3</td>
<td>0.45-0.48 m</td>
<td>0.61-0.64 m</td>
</tr>
</tbody>
</table>
Figure Captions:

Figure 1. The NSIDC (a, b) and SICCI (c, d) sea ice concentration on 1 June (a, c) and 30 August 2010 (b, d). The locations of BGEP_2009A, BGEP_2009D and IMB_2010B are shown as a white triangle, a white square and a white line, respectively, in image (a). Data-void areas: The white color along the coasts are white data-void areas, and these areas are larger in NSIDC than in SICCI.

Figure 2. The uncertainty provided with SICCI sea ice concentration data on 12 July (a), 20 July (b), 13 August (c), and 21 August (d), 2010. Data-void areas along the coasts are white. The white color along the coasts show the data-void areas.

Figure 3. The forecast skill improvement of sea-ice concentration: “24h forecast minus observations” averaged over August 2010. MITgcm only (a), LSEIK-1 (b), LSEIK-2 (c), and LSEIK-3 (d) 24 hour forecast minus SICCI ice concentration.

Figure 4. Same as figure 3, but “24h-forecasts minus MODIS composites” averaged over the period from June 3 - August 21, 2010. The 24h-forecasts used in the comparisons are the forecasts starting on the middle days start on day 5 of the 8-day-composites time period. The forecast skill improvement of sea-ice concentration: “24h forecasts minus MODIS composites” averaged over the period from June 3 - August 21, 2010. The 24h-forecasts are based on the middle days of the time period of each MODIS composite. The panels refer to MITgcm only (a), LSEIK-1 (b), LSEIK-2 (c), and LSEIK-3 (d).

Figure 5. Temporal evolution of RMSE differences between sea ice concentration forecasts and the SICCI (a) and NSIDC (b) ice concentration data. The RMSE only includes grid points for which the satellite data have ice concentrations below 0.35% (i.e. mostly in the marginal ice zone). The RMSE of the MITgcm free-run, LSEIK-1, LSEIK-2 and LSEIK-3 24-h forecasts are shown as gray, green, blue and red solid lines, respectively.

Figure 6. Sea ice thickness 24-hour forecast on August 30, 2010. MITgcm only (a), LSEIK-1 (b), LSEIK-2 (c), and LSEIK-3 (d).

Figure 7. Evolution of grid-cell mean sea ice thickness (m) at BGEP_2009A (a), BGEP_2009D (b), and IMB_2010B (c) from 1 June to 30 August 2010. The black solid and dashed lines show the obtained grid-cell mean ice thickness using SICCI and NSIDC sea ice concentrations, respectively. The MITgcm free-run, LSEIK-1, LSEIK-2 and LSEIK-3 24-h ice thickness forecasts are shown as gray, green, blue and red solid lines, respectively.

Figure 8. The ensemble spread: sea ice concentration standard deviation of sea ice-concentration for the individual grid cells as calculated from the 24-h ensemble forecasts on 30 August 2010. LSEIK-1 (a), LSEIK-2 (b), and LSEIK-3 (c).
Figure 9. The ensemble spread: sea ice thickness standard deviation of sea ice thickness for the individual grid cells as calculated from the 24-h ensemble forecasts on 30 August 2010. LSEIK-1 (a), LSEIK-2 (b), and LSEIK-3 (c).

Figure 10. The SICCI sea ice concentration (left panels), the melt pond fraction (middle panels), and the LSEIK-3 forecast skill improvement of sea-ice concentration (LSEIK-3 minus SICCI; right panels), the figures from top to bottom are 12 July, 20 July, 13 August, and 21 August, 2010, respectively. Note that the melt pond fraction maps are composites of based of last 8 days before the given date.