Peer-Review interrupted (04 Mar 2016) Author did not upload Revised Manuscript

Editor Decision: Publish subject to minor revisions (Editor review) (22 Feb 2016) by Marco Tedesco

Comments to the Author:

I would like to thank the authors for submitting the revised version of the manuscript and for addressing the concerns raised by the reviewers.

Before accepting the paper for publication, however, I would like to ask the authors to address the points below.

See answers in blue text below.

1) There are still typos and errors that need to be addressed throughout the manuscript. I am reporting below a list of what I was able to find but I strongly encourage the authors to check again the manuscript before the final submission.

We have checked again, removed remaining errors, and edited some sentences in order to make it more readable.

- Line 25. Add a comma after Here

 Done

- Line 41 an should be 'a'

 Done

- the last sentence of the abstract mentions runoff that 'contributed directly to global sea-level rise'. How are the authors supporting this statement?

 The gauging station is located by a Fjord and the meltwater is therefore running directly out into the Ocean and contributing to global sea level rise. In line 151, under section 2.2 "and with a direct outlet into the Kangerlussuaq Fjord" has been added.

- Line 51 'It is those that determine'. Please, rephrase

 Done.

- Line 67 add a reference at the end of the sentence:

 Now line 69-71. Reference added and the 3% specified to refer to the western part of the ice sheet.

- Line 68 'significant'. I would rather the authors to use this concerning statistical significance.

 Now line 72. Changed to: large

- Line 111. Sentence ending with 'melt rates' would benefit of a reference.

- Line 117. I find the expression 'implying ...' speculative

 Now line 115-116. Implying changed to Indicating. The fact that the bridge has not been washed away before now is strongly suggesting that the proglacial discharge has not been as high before. Given the lack of historical river stage data form before 2007, we think it is fair to use this as a proxy for highest water stage and thus proglacial discharge rate.

- Line 143. the references should be moved at the end of the sentence
Done.
- Line 189. It is not clear how the 5 km MODIS data were averaged at 100 m.
Now line 198: See the revised manuscript for clarification.

- Line 215 107 --> 7 should be superscript
Done.

- Line 288. an albedo of 0.05 seems unrealistically low and of the same order of magnitude of the MODIS error. Can the authors please add some comments on this?
Now line 303 – 305. We write that the albedo is 0.05 lower than in 2010 (...). Not that the albedo is 0.05.

- Line 293. I don't understand how this sentence fits into the context of the paper.
The sentence is deleted.

- Line 297. energyinput --> energy input
Corrected.

- Line 361. 'a couple of' is too colloquial. Please rephrase
Minor corrections applied to what is now line 372 to 377.
Moreover, the reply to reviewers is full of errors. The authors use the plural for verbs when the subject is singular. There are also several typos which highlight the poor care of the authors in checking their response before submission. I cordially invite the authors to correct those errors and pay more attention in the future about this detail. In this regard, if possible, the authors should submit a point-by-point reply to reviewers comments. This would help to understand how they addressed their comments.
As the lead author, I take full responsibility for this. I was simply not thorough enough with my replies, which have now been revised and improved.

I would encourage the authors to add the figure showing the components of the energy balance for KAN_L and KAN_U, as originally suggested by Reviewer # 1.
Three figures showing the yearly energy balance for the three weather station sites, AWS_L, AWS_M, AWS_U is shown in the supplementary material. There is referred to these figures in line 297 and 298 in the manuscript.

The plot in Fig. 3 stretches below the x-axis. Please correct the plot.
Temperature below -10 °C has been cut out of the plot and is not shown. The plot is very compact and it takes up too much space to include the lowest temperatures without stretching below the x-axis of Fig. 3A. The temperature figure would take up too much space if the entire temperature span in spring and autumn is included.

Lastly, I encourage the authors to, please, show how they addressed the points above in their reply to this comment.
See answers above in blue.
Answer to reviewers

Thanks to the two anonymous reviewers and comments from C. Charalampidis who provided constructive feedback and suggestions for improvement of the manuscript.

We have updated all the calculations, figures and numbers in the text so that they are based on a catchment delineation derived from the subglacial topography as presented in Lindbäck et al. (2015). Given the difference on catchment shape and size, the numbers change. However, the general pattern with the remarkable difference in the discharge response to the energy input between the two years 2010 and 2012 remain the same. In addition to this, the following changes have been made to the manuscript:

- The abstract have been shortened.
- The former supplementary figure is now included in the manuscript as Figure 2.
- The method section 2.5, about the SEB model have been expanded.
- A method description about the firn saturation model have been added as section 2.6.
- The method description of the catchment delineation (section 2.8) have been rewritten.
- Minor changes have been made to the result section.
- The discussion have been edited in order to make a better flow in the manuscript.

Specific answers to Referee #1

Page C1804, line 10, “I assume that the values in TW are not based solely on PDDs but on the full energy budget”?

All data and graphs regarding the ΣPDD has been replaced with calculations from the energy balance model, with the updated catchment. In the previous version, the text was not always clear enough about whether we used the ΣPDD’s or the Energy balance model. The data presented in Table 1 was based on the SEB-model and not a PDD calculation.

Page C1804, line 11: “I recommend that the authors provide additional detail about the van As (2011) model ...

As explained above, we have expanded our method explanation about the energy balance model. This have now been corrected and it should now be clear what we have done. The SEB model description have been expanded, although still kept relatively short due to the overall length of the manuscript. The model is well tested and used in numerous studies and described in detail in the papers cited in section 2.5.

Page C1804, line 15: “It might be useful to show even show the components of the energy budget for AWS_L and AWS_U”:

We have now added three figures in the supplementary material showing the energy balance for the three weather stations AWS_L, AWS_M and AWS_U. The figures is accompanied be a description.
Specific answers to Referee #2

Page C2004, line 18: "Mikkelsen et al 2015 acknowledge that ice catchment delineation is a potential source of uncertainty...."

The concerns raised about the catchment by Referee #2 is fair and we believe to have addressed that in the best possible way. We now use a catchment derived from basal topography in Lindbäck et al. (2015) and therefore address the specific comment (3).

In the revised method section, we address the problem with potential for subglacial water piracy (Specific comment (1)) and refer to Lindbäck et al. (2015) that find that Watson River catchment to shift during the season due to differences in subglacial water-pressure. However, the subglacial catchment, along with its hypsometry, remains effectively constant over the melting season. Therefore the calculated melt rates based on results from the energy balance model is considered robust.

Page C2005, line 2: "(2) Multi watershed approach...."

We do not present a multi watershed approach in the manuscript as such (specific comment (2)). However, the results presented in the previous version and the current revised version is based on two different catchment areas and arrive on the same conclusions. This support that the results presented here are robust. In Lindbäck et al. (2015), previous catchment delineations for the Watson River Catchment is compared and at lower elevations (where the melt rates are highest), they differ only little.

Page C2005, line 9: "(3) Basal topography resolution...."

Lindbäck et al. (2015) represent all the current available basal topography datasets together with a large amount of additional data presented in that study. Therefore, the best available basal topography dataset has been used for the revisions of the calculations.

Page C2005, line 11: (3) "... Furthermore, MODIS data is being used to map lakes and lake drainages and is also being resampled to a 5km grid ...

See line 227 to 238 for a clarified description:

"...Fifty-two cloud-free MODIS images with an initial resolution of 500 m were sharpened to 250 m and processed to derive the surface area and volume of supraglacial lakes...."

Specific answers to C. Charalampidis

We have no reason to doubt our calculations and the results presented in Table 2 and we are convinced that the differences lie in the point vs. catchment wide study. It is also worth noting that the absolute differences in melt at elevations above the mean ELA is small and the relative difference therefore is very sensitive to these differences.

Answer to the second and third point by C. Charalampedis: We do not include melt from the elevation interval between 1850 and 2050 m a.s.l. in this revised Figure 3F (previously Figure 2F). We do show the calculated melt from that interval on Figure 3D&E and include it as a part of Table 2. The reason for not
including it in the calculated totals we use in the conclusion and Figure 3F is that satellite imagery indicates that free surface water occurred below 2050 m elevation. However, we don’t know exactly at what elevation the melt potentially runoff rather than percolating and refreezing. Therefore we still show the calculated melt from the 1850 to 2050 m elevation interval in Table 2 and Figure 3D&E. Again we don’t see any reason to doubt the calculations. Even very small meltrates at this elevation summes up to relatively large amounts due to the hypsometric effect on the catchment that result in a large area for this elevation interval.

As explained above we have rewritten parts of the manuscript and believe it is sufficient to meets the comments on this point. We see no problem in having a youtube link in the text; it’s an easy and illustrative way to provide valuable information about the river for the readers not familiar with the location. We are afterall living in the 21’st century.
Extraordinary runoff from the Greenland Ice Sheet in 2012 amplified by hypsometry and depleted firn-retention

A.B. Mikkelsen1,2, Hubbard, A.L.3,4, MacFerrin, M.5, Box, J.E.6, Doyle, S.H.4, Fitzpatrick, A.4, Hasholt, B.7,8, Bailey, H.L.9,10, Lindbäck, K.2 and Pettersson, R.11,12

1[Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark]
2[Centre for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, Copenhagen, DK-1350, Denmark]
3[Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geology, University of Tromsø, Dramsvieen 201, N-9037 Norway]
4[Centre for Glaciology, Centre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK]
5[Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA]
6[Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark]
7[Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Periglacial Research Section, 14473 Potsdam, Germany]
8[Department of Earth Sciences, Uppsala Universitet, Villav. 16, 752 36 Uppsala, Sweden]

Correspondence to: A.B. Mikkelsen (bechmikkelsen@gmail.com)
Abstract

It has been argued that the infiltration and retention of meltwater within firn across the percolation zone of the Greenland ice sheet has the potential to buffer up to ~3.6 mm of global sea level rise (Harper et al., 2012). Despite evidence confirming active refreezing processes above the equilibrium line, their impact on runoff and proglacial discharge has yet to be assessed. Here, we compare meteorological, melt, firn-stratigraphy and discharge data from the extreme 2010 and 2012 summers to determine the relationship between atmospheric forcing and melt runoff at the land-terminating, Kangerlussuaq sector of the Greenland ice sheet which drains into Watson River. The 6.8 km3 bulk discharge in 2012 exceeded that in 2010 by 28%, despite only a 3% difference in net incoming melt energy between the two years. This large disparity can be explained by a 10% contribution of runoff originating from above the long-term equilibrium line (up to 1850 m a.s.l.) in 2012 caused by diminished firn retention. The 2012 amplified discharge response was compounded by catchment hypsometry—the disproportionate increase in the area contributing to runoff as the melt-level rose high into the accumulation area.

Satellite imagery and oblique aerial photographs reveal an active extensive network of supraglacial network rivers extending 140 km from the ice margin that confirms active meltwater runoff originating well above the equilibrium line. This runoff culminated in three days of record discharge of 3,100 m3 s$^{-1}$ (0.27 Gt d$^{-1}$) that peaked on 11 July and washed-out the Watson River bridge. Our findings corroborate meltwater infiltration processes across in the percolation zone though the resulting patterns of refreezing are complex and can lead to spatially extensive, perched superimposed ice layers within the firm. In 2012, such layers extended to an elevation of at least 1840 m and providing a semi-impermeable barrier to further meltwater storage, and thereby promoting enhanced widespread runoff from the accumulation area of the Greenland ice sheet that contributed directly to proglacial discharge and global sea-level rise.
1 Introduction

The Greenland ice sheet is losing mass at 0.7 mm yr\(^{-1}\) equivalent of global sea-level rise, the majority of which is attributed to surface ablation that is set to increase under atmospheric warming (Enderlin et al., 2014; Hanna et al., 2013). Although surface melt water production can be readily calculated by regional climate models (e.g. Fettweis et al., 2011), such estimates do not equate directly to sea-level rise due to the hydrological processes that buffer and store melt on, within and beneath the ice sheet. It has been argued that retention near at the ice sheet surface appears has to have the greatest capacity to offset future sea-level rise, and particularly refreezing across the wet-snow/percolation zone above the equilibrium line (ELA) is important (Pfeffer et al., 1991).

Within the percolation zone, melt generated at the surface infiltrates and refreezes within the snow-pack, increasing its density, forming firm and thereby retaining potential runoff (Pfeffer et al., 1991; Braithwaite et al., 1994). Harper et al. (2012) analysed a series of cores and ground penetrating radar profiles collected across an 85 km transect above the ELA at ~69.5°N to quantify the water storage capacity of the percolation zone. Their analysis revealed repeated infiltration events in which surface melt penetrated to more than 10 m depth and refroze as superimposed ice layers. Although the resulting patterns of vertical densification were complex, they argued that over a period of decades such infiltration will fill all of the available pore space and thereby providing a storage sink of between 322 to 1,289 Gt of melt equivalent to buffering ~0.9 to ~3.6 mm of global sea level rise.

Below the ELA in spring, melt water is initially stored within the snow-pack, but once the pore-space is saturated, it runs off the previous summer’s ice surface (Irvine-Fynn et al., 2011). This runoff either flows directly into the subglacial environment via supraglacial river networks and moulins, or is temporarily stored in supraglacial lakes. Such lakes can individually capture up to 10\(^7\) m\(^3\) (~0.01 Gt) of water and are estimated to cover up to 3% of the western sector of the ice sheet ablation area on the western part of the ice sheet (Box and Ski, 2007; Fitzpatrick et al., 2014). Hence, these lakes have the capacity to buffer large volumes of water on timescales from weeks to months, or and if they do not drain, then potentially over years if they do not drain (e.g. Fitzpatrick et al., 2014; Selmes et al., 2011). Once filled, the lakes contribute directly to proglacial discharge either by over-flowing into downstream moulins that have advected downstream or by rapid in situ drainage into the subglacial environment (e.g. Das et al., 2008; Doyle et al., 2013; Tedesco et al., 2013). It has been noted that supraglacial lakes often...
drain in clusters that may lead to cause major peaks in proglacial discharge (Doyle et al., 2013; Fitzpatrick et al., 2014). Ice-dammed proglacial lakes also provide a temporary buffer to proglacial discharge and are known to drain can flood suddenly rapidly (Carrivick and Quincey, 2014; Mikkelsen et al., 2013).

Quantifying these water storage mechanisms across the ice surface is important since the consequence of enhanced melt on mass balance and sea level contribution depends on the fraction of melt that escapes to the ocean. The elevation area of the ice sheet undergoing melt will rise expand to higher elevations under predicted atmospheric warming, and this could force runoff from well within the ice sheet interior and contribute to enhanced sea level rise (Hanna et al., 2008; Huybrechts et al., 2011; Smith et al., 2015). Expansion of the melt area with warming is further amplified by the ice sheet hypsometry. As the ice surface flattens toward higher elevations, a linear increase in the melt level results in a disproportionate gain in the net surface area exposed to melt conditions. If, however, a significant fraction of that melt is subsequently intercepted and stored by local percolation and refreezing within the snow-pack above the equilibrium line, or otherwise at lower elevations in supra- and pro-glacial lakes, then proglacial discharge and sea-level rise will be buffered on a time-scale of weeks to decades. Although these storage terms have been estimated for the ice sheet (Box and Ski, 2007; Carrivick and Quincey, 2014; Fitzpatrick et al., 2014; Harper et al., 2012; Humphrey et al., 2012), their combined impact on runoff and proglacial discharge in an integrated study has yet to be quantitatively assessed.

1.1 The exceptional 2010 and 2012 melt-seasons

The record warm Greenland summers of 2010 and 2012 have been studied documented using regional atmospheric modelling (Tedesco et al., 2013), microclimatological observations (Bennartz et al., 2013; van As et al., 2012), microwave and optical remote sensing (Nghiem et al., 2012; Smith et al., 2015; Tedesco et al., 2011), and in situ data informing a hypsometric analysis (McGrath et al., 2013). In both years, a blocking high pressure system, associated with a strongly negative summer North Atlantic Oscillation (NAO) anomaly, was present in the mid-troposphere over Greenland (Hanna et al., 2014). The resulting circulation pattern advected warm southerly winds over the western flank of the ice sheet, forming an insulating heat-bubble over Greenland (Neff et al., 2014) that promoted enhanced surface heating.
During summer 2010, higher than average near-surface air temperatures in western and southwestern regions of the ice sheet led to early and prolonged summer melting and metamorphism of surface snow, significantly reducing surface albedo and thereby enhancing sunlight absorption (van As, 2012; Box et al., 2012; Tedesco et al., 2013). Similarly, in 2012, high near-surface air temperatures and a low surface albedo enabled high melt rates (Ngheim et al., 2012). During 2012, exceptional melt events were concentrated in two periods in mid and late July. On 12 July, a ridge of warm air stagnated over Greenland and melt occurred over 98.6% of the entire surface of the ice sheet – even extending to the perennially frozen, high-elevation interior ice at the ice divide (McGrath et al., 2013; Ngheim et al., 2012). In the Kangerlussuaq sector, the focus of this study, the 11 July 2012 melt-event had a severe and direct hazardous impact with the wash-out and partial destruction of the Watson River bridge on the 11 July 2012 (https://youtu.be/RauzduvIYog), indicating revealing that proglacial discharge was at its highest stage since the early 1950’s when the bridge was constructed. A second phase of exceptional conditions returned in late July 2012 when over 79.2% of the ice sheet surface was again exposed to exceptional melt (Ngheim et al., 2012). Bennartz et al. (2013) found that low-level clouds played an important role by increasing near-surface air temperatures via their effect on radiative absorption. Such clouds were sufficiently low enough to enhance the downward infrared irradiance whilst being optically thin enough to allow solar radiation to penetrate. These conditions had the capacity to force rapid and extreme ice sheet melt and runoff that was visible from space and in time-lapse camera sequences of, for example, proglacial flooding (Smith et al., 2015) and turbulent plumes active at the fronts of tidewater glaciers (Chauché et al., 2014; Nick et al., 2012). Nevertheless, the challenge of estimating measuring discharge at marine-terminating glaciers, and the lack of proglacial gauging measurements stations in Greenland, means that this inference can only be assessed at a broad, regional scales using satellite-derived estimates of mass change balance (e.g. GRACE; Ewert et al., 2012). Hence, these the years of two years of exceptionally warm atmospheric forcing in 2010 and 2012 provide-present an ideal natural experiment and case-study opportunity to assess and quantify the catchment-wide efficacy and spatio-temporal footprint of melt, storage, and runoff processes across the ice sheet.

Here, by reference to the two successive extreme melt seasons of 2010 and 2012, we quantify the efficacy of surface melt storage processes across the Greenland ice sheet using a hydrological-budget approach. We compare surface melt with proglacial discharge across a well-defined, land-
terminating catchment that drains the Kangerlussuaq (K-transect) sector of the ice sheet. By drawing on satellite imagery, photographs and a series of snow-pits and firm-cores above the equilibrium line, we relate the calculated residual difference in the hydrological budget to the spatial extent and effectiveness of potential storage terms within the percolation zone.

2 Study area & methods

2.1 Study area

We focus on the ~12,500 km² hydrological catchment that drains into Watson River from the land-terminating Kangerlussuaq sector on the western margin of the ice sheet. The catchment is 95% glaciated and comprises four main outlet glaciers centred on Russell Glacier (Figure 1). Within this catchment, the ice surface rises ~90 km from the ice margin at 550 m a.s.l. to the mean-ELA (1990–2010) equilibrium line altitude (ELA) of 1,553 m a.s.l. (van de Wal et al., 2012; 2015), and extends a further ~150 km across the accumulation area to the ice divide at ~2,550 m a.s.l.

2.2 Proglacial discharge measurements

Proglacial river discharge was gauged near the Watson River bridge in Kangerlussuaq, located 22 km from the ice sheet margin. Due to orographic shielding by Sukkertoppen Ice Cap the Kangerlussuaq region is exceptionally dry, with a mean annual precipitation of 149 mm (Box et al., 2004; van den Broeke et al., 2008). Land surface water losses from evaporation and sublimation further minimise the land area contribution to runoff compared to the ice sheet component (Hasholt et al., 2013). Watson River discharge was determined using the stage/discharge relationship presented in Hasholt et al. (2013). Water stage was recorded by pressure transducers on a stable cross section ~100 m upstream from the bridge. The discharge Q is given by

$$Q = V \times A,$$

where V represents the mean velocity in the river cross-section and A is the cross-sectional area.

The surface velocity (V) was measured by means of a float and converted into mean cross-sectional velocity by applying a reduction factor of 0.95 (Hasholt et al., 2013). The cross-sectional area (A) used for discharge calculations is based on the deepest sounding of the channel bottom after the winter ice melts in spring. The combined uncertainty in the cross-sectional area and velocity
measurements is estimated to be 15% (Hasholt et al., 2013). However, here we also conservatively include the possibility of a systematically deeper cross section due to bed erosion within the deepest of the two channels during the runoff season. Therefore we estimate the upper limit in the yearly cumulative discharge for 2010 and 2012 at +44% and +32% respectively. The instantaneous possible potential error varies with the discharge rate, and is plotted together with the measured discharge (Figure 2D and E).

During the flood event on 11 July 2012 the water level exceeded the previously observed maximum water stage by 1.65 m (15%) and the stage-discharge relationship was extrapolated accordingly. Our stage-discharge relationship was also altered by the partial removal of a road dam (part of the bridge construction), which opened up two new, shallow channels between and south of the two original channels (Figure 3). We measured the cross-sectional area of the two new channels after the flood had subsided, and by combining these with measurements of the stage from time-stamped time-lapse photographs, we estimate that these new channels were 1.5 and 2.5 m deep at peak flow.

The surface velocity in these new channels was calculated assuming the conservation of energy in fluids:

\[v = \sqrt{2gh} \]

where \(v \) is the surface velocity of the water, \(g \) is the gravitational acceleration (9.82 m/s\(^2\)) and \(h \) is the water level. The uncertainty in \(v \) for the two new channels is predominantly attributed to the determination of stage from time-lapse photos, which we conservatively estimate at ~30%.

The two original bedrock channels remained intact and we assume that the hydraulic conditions in these channels did not change substantially during the flood event. For the period after the bridge foundation was partially washed out, the amount of discharge in the new channels is added to that calculated based on the stage/discharge relationship for the original channels. We estimate that the formation of the two new channels during the flood event resulted in a low relative (i.e. < 3%) contribution to the total discharge and they therefore do not substantially alter our results.

2.3 Meteorological measurements

Automatic weather stations (AWS) are located at three elevations: 732 m a.s.l. (AWS_L), 1280 m a.s.l. (AWS_M) and 1840 m a.s.l. (AWS_U) (see van As et al., 2012). Each AWS, recorded near-
surface (2-3 m) air temperature, humidity, wind speed, upward and downward shortwave and longwave irradiance, and air pressure.

2.4 Snow and ice albedo

Surface albedo was determined from NASA’s Terra Satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) interpolated onto a 5 km grid from 1 May 2010 to 31 September, 2012. An 11-day running median was taken to reject noise caused by contrails and cloud shadows (Box et al., 2012). From these data, an albedo time series was formed for the glaciated part of the Watson River catchment area defined as 67±0.2 °N, and west of 44 °W. The data were averaged in 100 m elevation intervals [on basis of Scambos & Haran (2002)]. The resulting albedo product was divided into three approximately equal-area bands corresponding to the physiographic regions dominated by surface impurity darkness (1000 to 1450 m a.s.l.), lakes (1500 – 1650 m a.s.l.) and wet-snow (1700 – 1850 m a.s.l. ; Figure 1) (see also Wientjes et al., 2012; Wientjes and Oerlemans, 2010).

2.5 Surface energy budget model

The surface energy budget (SEB) was calculated daily across the glacierized catchment following van As et al. (2012). The model calculates radiative, turbulent, rain and subsurface (conductive) energy fluxes using data from the three AWS measurements as input, interpolated into the same 100 m elevation bins as the albedo data. The MODIS albedo data were used in the calculation of net shortwave radiation. The sensible and latent energy fluxes were calculated from near surface gradients of wind speed, temperature and humidity using a stability correction. The surface mass balance (SMB) was calculated as the sum of solid precipitation, surface melt and sublimation. The model was validated against independent K-transect measurements (e.g. van de Wal et al., 2012) and its performance was found to be within 4% of the observed values. The net energy available for melt across the entire glacierized-catchment was determined by integrating the calculated energy flux (W m²) for each elevation interval by area. For the purpose of quantifying the potential net melt available for runoff, refreezing and retention parameterisations were disabled.
2.6 Firm Saturation Model

Based upon firm core stratigraphy and density measurements at AWS_U, a mass conservation simple-model was produced to illustrate when saturation and horizontal water flow might occur if melt water were not permitted to percolate beneath the massive 2010 semi-impermeable, superimposed ice layers. Water generated by melt at the surface, minus evaporation/sublimation, fills the available pore-space of the firm beneath and raises the saturated water table level. In situ measurements and/or reasonable ranges were assigned for model input values, including the density of fresh snow, the average depth and density of the packed snow layer above the firm, the density of refrozen ice and the amount of water attributed to sublimation and evaporation. Ten million (10^7) Monte Carlo model iterations were run over the range of input variables to produce 95% confidence intervals of the daily water levels and potential firm saturation dates at AWS_U.

2.7 Supraglacial lake drainage

To determine the extent and timing of supraglacial lake drainage events within the Watson River catchment, an automatic lake classification was applied to daily MODIS MOD09 imagery following Fitzpatrick et al. (2014). Fifty-two cloud-free MODIS images with an initial resolution of 500 m were processed sharpened to 250 m and processed to derive the surface area and volume of supraglacial lakes. The smallest lake classified was 0.0625 km^2 which equates to a single 250 x 250 m pixel. Lake areas were classified using an empirically-determined threshold of the Normalised Difference Water Index (NDWI; Huggell et al., 2002). Lake volume was derived using a reflective index approach after Box and Ski (2007) calibrated against lake bathymetry data that was acquired in 2010 (Doyle et al., 2013), and subsequently validated against in-situ depths from an independent supraglacial lake at 67° N, 48°W, at ~1420 m a.s.l. (Fitzpatrick et al., 2014). The error in our lake area and depth are estimated at ±0.2 km^2 per lake and 1.5 m per pixel respectively. Change in stored volume in each lake was converted to mean discharge rates between cloud-free observations (Figure 2 D and E).
2.8 Catchment delineation

A well documented source of uncertainty in calculating runoff stems from the delineation of hydrologically complex watersheds characterised by rapidly evolving supraglacial stream, river and lake networks (e.g. van As et al., 2012; Fitzpatrick et al., 2014; Smith et al., 2015). Furthermore, the supraglacial drainage system plays only a relatively minor part (be it albeit a readily observable one) in the entire water transport story and the subsequent routing of meltwater into the basal environment. Here we adopt a novel watershed delineation approach based on the subglacial catchment and drainage routing determined from subglacial hydropotential analysis (see presented by Lindbäck et al., 2015). In their analysis, Lindbäck et al. (2015) demonstrate that the subglacial spatial extent of the Watson River catchment can evolve and capture up to 30% of the area of the adjacent Isunnguata Sermia catchment, according to variable subglacial water-hydrological and water-pressure conditions during the melt-season. However, they also reveal that despite significant hydrological piracy between adjacent catchments, the actual contributing area of the Watson River subglacial catchment, along with its surface hypsometry, remains effectively constant. Moreover, Lindbäck et al. (2015) also demonstrate that across the lower ablation area (500 to 1250 m a.s.l.) where meltwater production rates are highest, this assumption holds the subglacial footprint is fixed under transient water-pressure conditions. Hence, we are confident that our catchment delineation adopted in this study, based on a steady-state subglacial hydropotential analysis and along with the resulting associated melt and runoff estimates, are robust and defensible within the errors of given available data-sets used.

2.9 Measurements of firn and snow pack density

To assess firn and snow-pack densification, 15 snow-pits and three 7.6-cm-diameter ice cores were obtained from eight sites between 1280 and 1840 m a.s.l. in April 2012. Two cores (#1 and #2) were drilled 10 m apart in the direct vicinity of near AWS_U while core #3 was drilled at a site located 400 m to the south of AWS_U. The core stratigraphy was analysed at ~1 cm vertical resolution before cores were cut into 10 cm sections and weighed to determine the density profile of
the snowpack and firn. A transect of 0.5 to 1 m-deep snow-pits between AWS_M and AWS_U were examined to investigate spatial variations in firn and snowpack density (Figure 1).

3 Results

Near-surface air temperatures from three AWS reveal insightful differences in the temporal and altitudinal distribution of melt-energy available for melt between 2010 and 2012. Melt commenced earlier in 2010 with the lowest AWS_L reaching 6°C daily average air temperature by mid-May (Figure 2A). At AWS_L, melt with air temperature 5°C above the seasonal average persisted until 15 September. The duration of the 2010 melt-season (119 days) was without precedent for the Kangerlussuaq sector of the ice sheet since 1973 (van As et al., 2012). At the uppermost AWS_U, located ~300 m above the 1991-2009 baseline ELA of 1524 m (van de Wal et al., 2012), above-freezing temperatures did not prevail until 8 July, 2010. Thereafter daily temperatures remained above melting-freezing until September making 2010 exceptional for melt compared to the long-term average.

During the 2012 melt season, air temperatures at elevations above the mean ELA-equilibrium line indicated widespread surface melt from mid-June onwards and included two week-long periods with extreme daily air temperatures at AWS_U of 4.5°C (Figure 2A) during coinciding with high barometric pressure and associated clear sky conditions. During the 5-days leading up to the extreme mid-July 2012 melt event, air temperatures at AWS_M and AWS_U were within 1°C despite being separated by 70 km horizontal and having 500 m elevation vertical separation. Hence, from mid June and throughout July 2012, the environmental lapse rate was exceptionally low—indicating that melting conditions likely prevailed across the relatively flat lower accumulation area. By the 12 July, surface melting extended across the entire accumulation area up to the topographic peak of the ice sheet, ice sheet divide, and, indeed, the entire ice sheet including Summit Camp and the NEEM drill site where wet snow conditions halted airborne ski-equipped CH130 operations (McGrath et al., 2013; Nghiem et al., 2012). Below 1000 m a.s.l., the mean 2012 summer air temperatures were in contrast 0.75°C lower than in 2010, though still higher than the long-term mean. This, in part, is partly explained by the delayed 2012 melt onset that commenced in late May 2012 (Figure 2A).
Somewhat surprisingly, the net cumulative energy available for surface melt across the glacierized portion of the catchment are virtually equivalent by the end of the 2010 and 2012 melt-season summers despite contrasting quite different prevailing melt-season development weather conditions (Figure 2B). The total energy available for melt across the catchment in 2010 and 2012 calculated using the SEB model for the catchment up to an elevation of 1840 m a.s.l. was just only 3% less in 2012 compared to 2010 (Table 1). See also the supplementary material for yearly energy balances for the three weather station sites for 2010 and 2012 respectively.

MODIS albedo time-series (Figure 2C) binned into three elevation bands equating to the extent of the dark-, lake- and wet-snow zones, respectively (Figure 1) exhibit complex patterns of change through space and time. In 2012, the albedo decline lags behind 2010 (Figure 2C) due to the early-May melt-season onset in May 2010 promoted by low 2009/2010 winter snow accumulation (van As et al., 2012). By mid-June, albedo across the dark zone for both years declined to 0.4. For the remainder of the melt season, the 2010 dark zone albedo was ~0.05 lower than in 2012 (Figure 2C), consistent with warmer temperatures and enhanced melt at low elevations during the in summer 2010 melt-season. Across the lake and wet-snow zones, a similar pattern of albedo decline is observed up until mid-June. From this time onward, in contrast to the dark zone, it is the 2012 albedo that is consistently and as much as 0.2 lower than 2010, with the exception of a week-long period snow-fall albedo reset on 5 August 2012 when albedo was reset due to snow-fall on 5 August 2012. Enhanced black carbon deposition from North American wildfire may have played a key role in driving the exceptionally low albedo at high elevations in 2012 (Keegan et al., 2014).

The seasonal evolution of daily Watson River discharge and catchment-integrated melt varies considerably between 2010 and 2012 (Figure 2D to F). In 2010 the integrated melt and proglacial discharge increased at a slower rate than in 2012, despite higher cumulative energy input aided by high-elevated temperatures and and combiend with lower albedo. Mean daily 2012 integrated discharge in 2012 peaked at 3100 m3s$^{-1}$ (equivalent to ~0.27 km3d$^{-1}$; Figure 4E) in mid-July, and which that washed-out Watson River bridge. With lower temperatures during the week commencing the 15 July, melt and discharge dropped to below 2010 levels but returned to high values (~of at least 1500 m3s$^{-1}$) for 11 days starting on 26 July, 2012, coincident with the second phase of exceptionally warm conditions. By the end of the melt-season, the annual-final total discharge in 2012 of 6.8 km3 −15±32% exceeded the-2010 total of 5.3 km3 in 2010 by ~28%.
Throughout the 2010 melt-season it becomes apparent that there is a steady increase in the residual difference between calculated integrated melt across the catchment and cumulative proglacial discharge, which by the end of the season equates to 33% (~1.8 km³) of residual melt retained (R') within the catchment (Figure 2F) compared to the measured discharge. In the period leading up to 11 July, 2012, a similar increase in residual R' as compared to 2010 suggests substantial meltwater storage within the catchment. However, after 11 July 2012, the residual R' drops by 40% from more than equating to 1 km³ of bulk discharge released within 5 days. Throughout the remainder of the summer, R' reduces further, diminishing by the end of the season, indicating that only ~0.2 km³ of meltwater is retained in the catchment, and that meltwater retention after 11 July 2012 was limited by the end of the melt-season. This contrasting catchment response to forcing between the two years is nicely demonstrated by plotting the plot of cumulative energy input versus cumulative discharge for 2010 and 2012 (Figure 4) demonstrates a contrasting catchment response to varying surface energy budget between the two years. The resulting slope of the cumulative measured discharge versus cumulative calculated energy input-energy forcing against discharge response is considerably steeper in 2012 than in 2010. Hence, for a given energy input, there was a disproportionately higher-larger catchment runoff and Watson River discharge response in 2012 compared to 2010, particularly during the 11 to 14 July 2012 melt-event. When the discharge response to the energy input is even stronger.

Table 2 lists calculated melt totals from different elevation bands along with bulk Watson River discharge and their difference are listed in Table 2. Below the long-term mean ELA of 1550 m, 2010 and 2012 calculated melt totals have roughly equivalent are within 7% difference) calculated melt of each other. By contrast, above the ELA at the two elevations bands up to 1550 – 1850 m and 1850 – 2050 m a.s.l., the calculated melt was 97 and 232%, respectively larger in 2012 compared to 2010 for the elevations 1550 to 1850 m a.s.l. and 1850 to 2050 m a.s.l., respectively. (only melt up to 1850 m. a.s.l. is included in Figure 2F and 3). Despite this, the absolute difference in total calculated melt between the two years was still within only 2%, depending on the elevation band to which melt is included. Yet, the difference in measured proglacial discharge between the two years peaks at 28%. Thus, the runoff response to surface energy input-atmospheric forcing is again demonstrated to be was significantly more pronounced higher in 2012, reflected in the larger residual between calculated melt and measured proglacial discharge.
discharge (Figure 2F) and further illustrated by the contrasting discharge response to energy flux compared to 2010 (Figure 4).

Examination of the timing between catchment-integrated melt and proglacial discharge (Figure 2D and E) demonstrates that meltwater routing through the glacial and proglacial system has a lag of between 1 to 5 days during each melt-season. In June 2012, the proglacial discharge response to melt was dampened and delayed. Prior to the 11 July 2012 extreme melt and discharge, the integrated modelled melt closely resembles the proglacial discharge hydrograph but with a ~3 day lag. Henceforth, through the remainder of July and the beginning of August 2012, there is a significantly shorter lag between discharge response to melt production with a shorter lag. The implication here is that once local meltwater production had been mobilised, even at high elevations above the ELA, runoff transits within 2 days through a drainage network up to 160 km distant from the gauging station within 3 days, eventually contributing to the proglacial discharge peak. Such rapid transit times imply with supra- and sub-glacial mean flow velocities > in excess of 2 km h\(^{-1}\) (~0.6 m s\(^{-1}\)) through what has to be considered an efficient drainage system. These results are on comparison comparable to similar transit velocities derived from tracer-experiments conducted up to 57 km from the ice margin in 2011 (Chandler et al., 2013). The second phase of intense melt, commencing on 26 July 2012 resulted in a rapid rise in proglacial discharge with a lag of just 2 days. Peak melt during this period occurred on 3 August 2012 with the associated peak in proglacial discharge occurring two days later on 5 August 2012.

The onset of discharge abatement was concurrent with declining air temperatures from 6 August 2012 onwards.

The release of water stored in supraglacial lakes accounts for a very minor component of proglacial discharge. In 2012 the majority of lake drainages occurred well before any peaks in proglacial discharge (Figure 2E and F). The calculated mean drainage rate of <100 m\(^3\) s\(^{-1}\) for 2012 clearly indicates that the volume of lake drainage water contributed less than 2% of the total bulk discharge (Figure 2 D&E). The maximum short-term contribution from lake drainage (0.10 km\(^3\)) occurred on 23 June 2012 with the synchronous drainage of a local cluster of five lakes (Figure 2E). Over the following week, approximately 70% of all the water stored in supraglacial lakes across the entire catchment was released (Figure 2E), which could have potentially accounted for as much as half of the Watson River discharge. However, this synchronous multiple
lake drainage event occurred ~12 days before the proglacial discharge peak of 11 July 2012. Supraglacial lakes can empty drain in as little as 2 hours (Das et al., 2008; Doyle et al., 2013) and it is very likely that this stored water stored in supraglacial lakes exited discharged out of the catchment well before 11 July. One small ~0.02 km3 lake drainage event between 5 and 8 July would have likely to have contributed some ~2% to the extraordinary discharge measured between July 10 and 14 (0.9 km3).

Analysis of MODIS and Landsat imagery reveal indicate that no proglacial ice-dammed lakes within the catchment drained prior to the mid-July flooding event, including one that appears to drain regularly in August/September each year (Mikkelsen et al., 2013). On 11 September 2010 and 12 August 2012, the a partially filled proglacial lake described in Mikkelsen et al., (2013) did drain (described in Mikkelsen et al., 2013), and even though it is evident it is recorded in the Watson River hydrograph, the net contribution to the proglacial discharge is minor (Figure 2D and E).

4 Discussion

Our observations analysis reveals show that even though the net atmospheric forcing represented by the total incoming energy flux for 2010 and 2012 was equivalent similar(Figure 4), yet the ensuing runoff response was markedly different (Figure 4). Widespread melt in 2010 has been ascribed to atmospherically-sourced heating coupled with the a strong albedo feedback promoted by low winter snowfall and early melt onset (Tedesco et al., 2011; Box et al., 2012; van As et al., 2012). Yet low albedo and high air temperatures alone cannot do not explain the 28% increase in discharge in 2012 compared to 2010. MODIS Our analysis also confirms that the release of stored water from supraglacial lakes played a relatively minor role in the peak and total proglacial hydrograph-discharge in 2012 (Fig 2D and E). At most, the supraglacial lake contribution to the 11 July 2012 peak discharge of 3,100 m s$^{-1}$ was ~2%. Our results indicate that only a relatively small proportion of the total melt generated at the surface was stored in supra- and proglacial lakes and that the buffering effect of lakes on runoff and discharge is thus therefore limited (Figure 2D and E). That is not to dismiss the key role of supraglacial lakes in ice sheet hydrology, since it is the ephemeral-critical storage of large volumes of surface meltwater in them that initiate enable the critical volume required to initiate and propagate new hydrofractures and moulins and allow them to propagate to the bed - which eventually develop into moulins (Krawczynski et al.,
Supraglacial lakes are hence key prerequisites to creating efficient englacial pathways for discharging surface water into the subglacial environment over the melt season (Das et al., 2008; Doyle et al., 2013). In this manner, supraglacial lakes are hence key prerequisites to creating efficient englacial pathways for discharging surface water into the subglacial environment over the melt season (Das et al., 2008; Doyle et al., 2013).

We infer three mutually compatible explanations for the exceptional discharge response observed in 2012: 1) that significant melt occurred above the equilibrium line in addition to as well as below the ELA, 2) that ice surface hypsometry amplified the total melt originating from the accumulation zone by disproportionately increasing the contributing area when as melt-levels rose above the ELA, and 3) that firm-retention and storage capacity was reduced within the accumulation zone, which thereby promoting widespread large-scale runoff. It is significant that such a large runoff contribution from the percolation zone could only have been attained if firm-retention capacity was either filled or otherwise severely reduced in 2012 and it is this hypothesis that herein forms the central tenet of our discussion. In support of this we present three additional lines of evidence: A) snow pit observations and ice firm core stratigraphy acquired in April 2012 from the percolation zone, B) observations of surface water networks obtained from satellite imagery and oblique photographs in the vicinity of AWS_U from the vicinity of AWS_U (Figure 6), and, C) results of our SEB-modelling experiments where total integrated melt is assumed to runoff without any retention or refreezing.

Our core stratigraphic analysis (Figure 5A to C) reveals a number of perched superimposed ice layers that would be impermeable and hence potentially capable of blocking surface meltwater infiltration into deeper unsaturated firm pore-space layers across the percolation zone. In addition to the shallow ice-firm cores presented (Figure 5), a persistent and continuous decimetre-thick layer of refrozen, superimposed ice was also observed in 15 snow pits dug along a transect from extending from below the ELA equilibrium line (1500 m a.s.l.) to AWS_U (Figure 1). Severely reduced firm-retention due to such a superimposed, perched ice lens is further supported by energy balance mass conservation modelling of the near-surface water table at AWS_U (Figure 5D). Here, two potential sets of blocking layers at different levels within the snow-pack equate to the thick superimposed ice lenses observed in the firm cores acquired at AWS_U (Figure 5A to C). For the shallowest of these scenarios, melt and retention calculations predict complete saturation and free surface water available for active runoff by 11 July 2012. Our results are consistent with a recent study by Machguth et al. (2015) who also demonstrate...
reduced meltwater retention across the percolation zone of western sector of the Greenland ice sheet.

Evidence for firm saturation and active surface runoff are furnished independently by the identification of an active supraglacial channel network in Landsat satellite imagery and from oblique photographs taken 13 August 2012 in the vicinity of AWS_U (Figure 6). In the Landsat imagery indicates that wet snow, meltwater channels and lakes can be identified up to at least 1750 m a.s.l. on 23 June 2012, and an active stream network up to at least 1840-1800 m a.s.l. from 5 July 2012 onwards. In early August, 2012 an active channel network was confirmed first-hand during a scheduled maintenance visit to AWS_U (Figure 6B and C).

The well developed supraglacial hydrological network that is clearly evident above the long-term ELA equilibrium line in the period leading up to the 2012 peak discharge event confirms the assessment of firm retention conditions and the snow-pack modelling presented here. Moreover, The oblique aerial photos of stream networks to 1840 m a.s.l. provide unequivocal evidence for widespread surface runoff from the percolation zone across the western sector of the Greenland ice sheet.

MODIS analysis confirms that the release of stored water from supraglacial lakes played a relatively minor role in the peak and total proglacial hydrograph in 2012 (Fig 2D and E). At most, change in supraglacial lake storage contributed just only 2 % to the 11 July 2012 peak discharge of 3,100 m s⁻¹ was ~2%. Our results indicate that only a relatively small proportion of the total melt generated at the surface is stored in supra- and pro-glacial lakes and that the buffering effect of lakes on runoff and discharge is therefore limited (Figure 2D and E). That is not to dismiss the importance of supraglacial lakes in ice sheet hydrology, since it is the ephemeral storage of surface meltwater in them that enable the critical volume required to initiate and propagate new hydrofractures and moulins to the bed (Krawczynski et al., 2009). In this manner, supraglacial lakes are key to creating efficient englacial pathways for discharging surface water into the subglacial environment over the melt-season (Das et al., 2008; Doyle et al., 2013).

If forecasted future atmospheric warming is realised, then the combined impact of reduced firm retention capacity and ice sheet hypsometry will become increasingly apparent through amplification of runoff and discharge response with interior melting. If, as we hypothesise, the extraordinary 2012 discharge was substantially in-partly derived from runoff originating above the ELA equilibrium line due to an impermeable, superimposed ice lens that formed during previous
warm summers, then the 2012 record-warm event itself will *drive lead to* the formation of even thicker, superimposed ice layers extending yet further into the interior (e.g., McGrath et al., 2013). Hence, we infer a strong positive feedback where a disproportionate and amplified runoff response to future melt events leads to yet more abrupt and severe proglacial discharge, as the 11 July 2012 flooding documented here.

In light of these findings, the firn-buffering mechanism proposed for the EGIS line some 120 km north of our study area and extrapolated across the entire ice sheet by Harper et al. (2012) would appear to be somewhat diminished, at least in the Kangerlussuaq sector. Based on their data and analysis (Figure 2B and 3C in Harper et al., 2012) and assuming an equivalent location, our AWS_U site, located 50 km beyond, and 300 m above the ELA, should have had a buffering capacity equating to a fill-depth of between 2 m and 10 m of melt-water equivalent of melt. In July 2012, *up to and including* AWS_U at 1840 m a.s.l. this was not the case and under saturated snow-pack conditions, melt was forced melt to runoff from the percolation zone into an active well-developed supraglacial hydrological river network thereby directly contributing to proglacial discharge and sea-level rise. The next decade will reveal if 2010 and 2012 were exceptions or are part of an emerging new trend. The three years subsequent to the 2012 melt and runoff extreme, i.e., 2013-2015, have been marked by low temperatures, reduced melting and anomalously high accumulation which will have, to some extent, recharged the buffering capacity of the lower accumulation area. Either way, it will be critical to understand the future runoff response to variable atmospheric forcing and to determine what portion of the melt generated is intercepted and stored and what fraction contributes directly to proglacial discharge and global sea-level rise.
A key implication of our study is that expected climate warming will change the limit of upper elevation ice sheet runoff to a higher level sooner. The hypsometric effect that amplifies runoff by the contributing area increasing exponentially with elevation (Figure 1) combined with efficient drainage (2-3 day transit times for water; (results here and in Smith et al. 2015), we may thus expect the ice sheet sea level contribution to be faster than inferred by Harper et al. (2012).

5 Conclusions

Comparison of melt and discharge across the Kangerlussuaq sector in 2010 and 2012 has enabled us to assess, resolve, and attribute the contrasting runoff response of the Greenland ice sheet to extreme atmospheric forcing. The bulk discharge of 6.8 km3 measured and flooding of in Watson River in 2012 was unprecedented since the Kangerlussuaq Bridge was constructed in the early 1950’s and exceeded the previous record set in 2010 by ~28%. Throughout the 2010 melt-season, there was a steady increase in the residual difference between calculated melt across the catchment and cumulative proglacial discharge, which by the end of the season equated to 33% (~1.8 km3) melt retained within the catchment up to an elevation of 1850 m a.s.l. In the period leading up to 11 July 2012 a similar pattern of storage indicates significant meltwater-catchment retention. However, after the 11 July flooding the residual fell by 40% and reduced further by the end of September with only 3% (~0.2 km3) of generated melt generated within the catchment retained. The abrupt change signifies a sudden decrease in retention associated with essentially complete surface snow ablation below areas with snow that became water-saturated. Surface melt energy versus proglacial discharge demonstrates an amplified response to melt energy-forcing in 2012 as compared to 2010, particularly during after the 11–14 July flooding. In 2010 local melting from above the ELA–equilibrium line infiltrated, and was stored within the firm as superimposed ice layers and hence did not contribute to river-proglacial discharge. In By contrast, in 2012 though, our observations analysis and modelling indicate reveals severely reduced firm-layer infiltration and retention capacity due an extensive perched, thick and low semi-impermeable ice lens, which that most likely formed in previous, anomalously warm melt-seasons, including 2010 years (e.g. 2007 and including 2010).

The next decade will reveal if 2010 and 2012 were exceptional melt seasons or are part of an emerging new trend. The three years subsequent to the 2010 and 2012 melt and runoff extremes, i.e., 2013-2015 were marked by low total melt and in some cases anomalously high accumulation.
The effect will have been to recharge the buffering capacity of the lower accumulation area to some degree. Either way, it is critical to understand the ice sheet runoff response to such events to determine what portion of the melt generated is intercepted and stored and what fraction directly contributes to proglacial discharge and sea level rise. Our results reveal that the firm retention and buffering effects that are argued to dominate the percolation zone were much reduced across the Kangerlussuaq sector in 2012. This resulted in a near-instantaneous runoff and proglacial discharge response with a disproportionately greater area of the ice sheet above the ELA from above the accumulation area contributing to runoff and thereby contributing directly to global sea level rise.

Acknowledgements

We thank Dirk van As and Horst Machguth for assistance in the field, advice and during preparations of the manuscript. We thank Dirk van As for weather station data, runoff calculations, initiating firm investigations, fieldwork logistics, writing and supervision of Andreas Bech Mikkelsen's PhD project. Likewise Horst Machguth for field assistance. Gratitude also goes to Paul Smeets, Institute for Marine and Atmospheric Research, Utrecht University for providing oblique aerial photographs taken at AWS_U on 13 August 2011. We acknowledge financial support from the Greenland Analogue Project (GAP) – Sub Project A that funded AWS_U - the weather stations and field logistics, the commission on scientific investigations in Greenland, grant no. 07-015998, 09-064628 and 2138-08-0003 and the Danish National Research Foundation founding Centre for Permafrost (CENPERM), funded by the Danish National Research Foundation, DNRF number 100, Department of Geosciences and Nature Resource Management, University of Copenhagen, Denmark for financial support of the discharge measurements. The on-ice weather station in this study was maintained by GEUS and Aberystwyth University. J.BBox is here supported by Denmark's "Det Frie Forskningsråd", Nature and Universe grant DFF – 4002-00234. The National Aeronautics and Space Administration (NASA) award NNX10AR76G provided funding for firm table modelling work through the Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, USA. AF and SD were supported by NERC and Aberystwyth University doctoral scholarships respectively and fieldwork infrastructure was further supported by NERC Projects NE/G005796/1, NE/G010595/1, NE/H024204/1 and a Royal Geographical Society Gilchrist
Fieldwork Award. A.H. kindly acknowledges support from the Centre for Arctic Gas Hydrate, Environment and Climate by-funding from the Research Council of Norway (Grant No. 223259).
References

Table 1: Energy inputs in 2010 and 2012 (TW).

<table>
<thead>
<tr>
<th>Energy inputs – 0 to 1850 m.a.sl.</th>
<th>2010</th>
<th>2012</th>
<th>2012 to 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy available for melt</td>
<td>2.43×10^6</td>
<td>2.37×10^6</td>
<td>$-3%$</td>
</tr>
</tbody>
</table>

Table 2: Melt contributions (km3) from different elevation intervals integrated through end of melt season, 1 Oct each year

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2012</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km3</td>
<td>km3</td>
<td>%</td>
</tr>
<tr>
<td>Below mean ELA</td>
<td>6.8</td>
<td>6.3</td>
<td>$-7%$</td>
</tr>
<tr>
<td>1550 to 1850 m</td>
<td>0.4</td>
<td>0.7</td>
<td>97%</td>
</tr>
<tr>
<td>1850 to 2050 m</td>
<td>0.1</td>
<td>0.3</td>
<td>232%</td>
</tr>
<tr>
<td>Total – up to 1850 m</td>
<td>7.1</td>
<td>7.0</td>
<td>$-2%$</td>
</tr>
<tr>
<td>Total – up to 2050 m</td>
<td>7.2</td>
<td>7.3</td>
<td>1%</td>
</tr>
<tr>
<td>% melt above mean ELA (1550 to 1850 m)</td>
<td>5.6 (%)</td>
<td>10.0 (%)</td>
<td>78%</td>
</tr>
<tr>
<td>Measured proglacial discharge at Oct. 1</td>
<td>5.3</td>
<td>6.8</td>
<td>28%</td>
</tr>
<tr>
<td>Integrated melt up 1850 m – measured discharge</td>
<td>1.8</td>
<td>0.2</td>
<td>$-90%$</td>
</tr>
<tr>
<td>Integrated melt up 2050 m – measured discharge</td>
<td>1.9</td>
<td>0.5</td>
<td>$-74%$</td>
</tr>
</tbody>
</table>
Figure 1: (A) The location of the study area (cyan) and catchment (red) in Greenland is shown on the inset map. (B) Map of the study area overlain with the location of the AWS, gauging station, catchment area, and snow pit sites. The background Landsat 7 image, which was acquired on 16 July 2012, reveals surface water in that superglacial lakes and streams occurred at an exceptional and unprecedented elevation of ~18040 m asl. The non-linear increase in the size of the catchment with increasing elevation is shown in (C) and (D) shows an example of the impact on melt area with a rise in the snow line of 250 m with a 500 m displacement in different start elevations (hypsometric effect).
Figure 2: Photograph taken at 18:00 West Greenland Summer Time on 11 July 2012 during the flood with the Watson River bridge being washed-out. Courtesy of Jens Christiansson.
Figure 3: Meteorological records, discharge measurements and modelled melt runoff for the study area during 2010 and 2012, including (A) daily average air temperature at AWS_L and AWS_U. (To avoid cluttering temperatures below –10 °C is not shown. Likewise the plot the air temperatures at AWS_U is only plotted during summer and the air temperature at AWS_M, which usually lies between that of AWS_L and AWS_U is not plotted at all). (B) the calculated cumulative energy input, (C) the albedo at three different elevation bands, (D, E) the proglacial discharge, supraglacial lake drainage volume, and modelled melt runoff, and (F) the cumulative proglacial discharge, modelled melt runoff, and residual between the two. The dashed vertical purple line demarks the bridge wash out on 11 July 2012. The uncertainty in discharge estimates is shown using grey lines on (d) and (e) and by grey shading on (f). Where the uncertainty estimates for 2010 and 2012 overlap on (f) a darker shade of grey is used.

Figure 4: The cumulative measured discharge as a function of the calculated energy input for the catchment up to 1850 m a.s.l. The flooding period of 11 to 14 July is marked with a bold red line.

Figure 5: (A-C) Density profiles of three shallow firm cores (A-C respectively) drilled at AWS_U in May-April 2012. The water table is indicated in light blue and ice lenses observed in the core.
straigraphy are indicated in cyan. Magenta and red lines indicate two potential sets of "blocking" ice lenses observed in the firm. (D) A model simulation of the near-surface water table at AWS_U for each of the two blocking lens assumptions in A-C, with 95% confidence intervals in grey. Red ticks on the horizontal axes indicate days above freezing when surface melt would occur. As snow melts above the blocking lenses the water table rises simultaneously until it meets the lowering snow surface. Light blue is free air. The daily snow surface is observed by the adjacent AWS_U AWS. The two dashed orange vertical lines indicate 11 July, the date of the Watson River bridge destruction, and 16 July, when the Landsat image from Figure 1 shows horizontal water transport in the vicinity of AWS_U.

Figure 6: (A) Zoom in on Landsat 7 image from 16 July 2012 showing free surface water in the area around AWS_U. The extent is marked on Figure 1. The scan line correction failure was interpolated using the ENVI 'replace bad data' routine based on Band 8 and visible surface water was enhanced using a modified normalized difference water index (Fitzpatrick et al., 2014). (B and C) Oblique aerial photographs of the active surraglacial channel netowk emerging from AWS_U.
well within the accumulation zone at 1840 m a.s.l. and 140 km from the ice sheet margin on 13 August 2012. Courtesy of Paul Smeets.
Supplementary Figures

Energy balance for the three weather stations AWS_L, AWS_M and AWS_U (located at 680, 1270 and 1840 m a.s.l. respectively), as based on the surface energy balance model explained in section 2.5. The energy balance is shown as the yearly averaged energy fluxes for the respective 100 m elevation interval corresponding to the weather stations at each elevation interval. The components shown are SSH = sub-surface heat flow, LHF = latent heat flow, LRnet = net long wave radiation, SHF = sensible heat flow, SRnet = net short-wave radiation. M = energy available for melt. Energy input from rain is omitted on the figure given it is contributing with a maximum of 0.1 W/m² when averaged over a year. When the number is positive, the energy flux is directed towards the surface and vice versa when it is negative.

For AWS_L, the main difference between year 2010 and 2012 is a 10.2 W/m² smaller SRnet influx of energy over the year. The energy input from SHF is 2.6 W/m² smaller for the averaged year and the loss of energy through LRnet is 3.9 W/m² smaller in 2012 compared to 2010. The removal of energy through LHF is 1.4 W/m² smaller in 2012 compared to 2010, where SSH is 1.24 W/m² larger in 2012. Overall the resulting energy available for melt is 6.5 W/m² smaller for the KAN_L elevation in 2012, as compared to 2010.

For AWS_M, the energy input for SRnet and SHF was 4.7 and 2.4 W/m² smaller respectively in 2012 compared to 2010. The removal of energy via LRnet and LHF was respectively 5 and 1.4 W/m² smaller in 2012 compared to 2010. SSH represented a positive flux towards the surface, that was 0.4 W/m² larger in 2012. The resulting energy available for melt is almost equal between the two years with a 0.6 W/m² larger energy input in 2010.

For AWS_U, the energy input for SRnet was 0.6 larger in 2012 relative to 2010, where SHF was 3.7 W/m² smaller in 2012 compared to 2010. The removal of energy via LRnet and LHF was respectively 5.1 and 0.8 W/m² smaller in 2012 compared to 2010. SSH represented a positive flux towards the surface, that was 1.5 W/m² larger in 2012. The resulting averaged energy available for melt in 2012 was 4.3 W/m² larger than in 2010.