Improved GRACE regional mass balance estimates of the Greenland Ice Sheet cross-validated with the input-output method

Z.Xu¹, E.Schrama¹, W. van der Wal¹, M. van den Broeke², Ellyn M. Enderlin³

¹ Faculty of Aerospace Engineering, Delft University of Technology, the Netherlands.
² Institute for Marine and Atmospheric Research, Utrecht University (UU/IMAU), the Netherlands
³ Climate Change Institute & School of Earth and Climate Science, University of Maine, Orono, ME 04469, USA

Correspondence to: Z.Xu (Z.Xu-1@tudelft.nl)
Abstract

In this study, we use satellite gravimetry data from the Gravity Recovery and Climate Experiment (GRACE) to estimate regional mass changes of the Greenland ice sheet (GrIS) and neighbouring glaciated regions using a least-squares inversion approach. We also consider results from the input-output method (IOM) that quantifies the difference between mass input and output of the surface mass balance (SMB) components from the Regional Atmospheric Climate Model version 2 (RACMO2) and ice discharge (D) from 12 years of high-precision ice velocity and thickness surveys.

We use a simulation model to quantify and correct for GRACE approximation errors in mass changes between different sub-regions of GrIS and investigate the reliability of pre-1990s ice discharge estimates based on modelled runoff. We find that the difference between IOM and our improved GRACE mass change estimates is reduced in terms of the long-term mass changes, when using a reference discharge derived from the runoff estimates in several sub-areas. In most regions our GRACE and IOM solutions are consistent with other studies, but differences remain in the northwestern GrIS. We verify the GRACE mass balance in that region by considering several different GIA models and mass change estimates derived from the Ice, Cloud and land Elevation satellite (ICEsat). We conclude that the remaining differences between GRACE and IOM are likely due to underestimated uncertainties in the IOM solutions.
1 Introduction

During the last decade, the ice mass loss from the Greenland ice sheet (GrIS) became one of the most significant mass changing events on Earth. Because of its ongoing and potentially large future contribution to sea level rise, it is critical to understand the mass balance of the GrIS in detail. As the result of increasing run-off and solid ice discharge, the GrIS has been experiencing a considerable and increasing mass loss since the mid-1990s (Hanna et al., 2005; Rignot and Kanagaratnam, 2006; van den Broeke et al., 2009). The changes in mass loss rates are due to different processes, e.g. in the northwestern GrIS the mass loss acceleration is linked to the rapidly increasing discharge in this region (Enderlin et al., 2014; Andersen et al., 2015), while in the southeast the increase in mass loss rate after 2003 is mainly due to enhanced melting and less snowfall (Noël et al., 2015).

To quantify recent changes in GrIS mass balance, three methods are used: satellite altimetry, satellite gravimetry and the input-output method (Andersen et al., 2015; Colgan et al., 2013; Sasgen et al., 2012; Shepherd et al., 2012; Velicogna et al., 2014; Wouters et al., 2013). The latter two methods are used for this study.

The input/output method (IOM) evaluates the difference between mass input and output for a certain region. It considers two major mass change entities, i.e. Surface mass balance (SMB) and solid ice discharge (D). SMB is commonly estimated using climate models (Ettema et al., 2009; Fettweis, 2007; Tedesco et al., 2013; van Angelen et al., 2012), whereas ice discharge can be estimated with combined measurements of ice velocity and the ice thickness, e.g. Rignot and Kanagaratnam (2006), Enderlin et al. (2014) and Andersen et al. (2015). The total SMB and D from 1960 to 1990 are sometimes used in order to reduce the uncertainties in the mass changes of
SMB and D (van den Broeke et al., 2009; Sasgen et al., 2012). However, using the reference SMB and D may introduce new uncertainties in IOM. We will discuss the details of the IOM as well as the uncertainties of the reference SMB and D in Sect. 2.

The satellite gravity observations from GRACE (Gravity Recovery and Climate Experiment), provide snapshots of the global gravity field at monthly time intervals, which can be converted to mass variations. GRACE observations are, however, influenced by measurement noise and leakage of signals caused by mass changes in neighboring areas. Besides, the GRACE data contain north-south oriented stripes due to measurement noise and mis-modeled high-frequency signal aliasing in the monthly gravity fields. Therefore, in order to estimate the mass balance for GrIS sub-regions from GRACE data, we apply the Least Squares inversion method (Schrama and Wouters, 2011) in this study with an improved approach to obtain constraints (Xu et al., 2015). Bonin and Chambers (2013) showed in a simulation study that the Least Squares inversion method introduces errors. In this study, we aim to tackle the error from the inversion approach as well as the effect of different discharge estimates resulting from assumptions about discharge during a reference period. We then evaluate our results by comparing GRACE and IOM estimates with each other and with published estimates from satellite altimetry. Previous studies have compared regional GrIS mass changes from different independent methods. In Sasgen et al. (2012), the mass balance in 7 major GrIS basins was derived from the IOM and GRACE data using a forward modelling approach (Sasgen et al., 2010). When separating out the IOM components and comparing with the seasonal variability in the derived GRACE solution the relative contributions of SMB and D to the annual mass balances were revealed. In the northwestern GrIS important differences between IOM and GRACE were noted, which were ascribed to the uncertainty in the regional discharge component in this area where detailed surveys of ice thickness are lacking. The comparison between two approaches
shows 24±13 Gt·yr⁻¹ mass loss difference in this region, and as a result the uncertainty in the
regional mass balance estimate is estimated at ~46%. However, using new discharge estimates and
the corresponding IOM regional mass changes in the northwestern GrIS, Andersen et al. (2015)
found that the difference between GRACE and IOM mass loss estimates fell within the combined
uncertainty range

The GrIS drainage systems (DS) definition of Zwally (2012) is employed in order to investigate
the mass balance in GrIS sub-region. This definition divides the whole GrIS into 8 major drainage
areas, and each drainage area is further separated by the 2000m elevation contour line, creating the
interior and coastal regions for each drainage area. This GrIS DS definition is employed by several
other studies, (Andersen et al., 2015; Barletta et al., 2013; Colgan et al., 2013; Luthcke et al., 2013;
Sasgen et al., 2012). Also, Wouters et al. (2008) found that in GRACE data, the regional mass
changes on GrIS are also influenced by the mass changes in areas outside Greenland, i.e. Ellesmere
Island, Baffin Island, Iceland and Svalbard (EBIS) (Wouters et al. 2008). Therefore, we include
four additional DS to reduce the leakage from these regions; the overall mascon definition used in
this study are shown in Fig. 1.

Using the Least Squares based inversion approach of Schrama and Wouters (2011), we find that
mass change differences between GRACE and IOM in the southern GrIS are larger than the
assumed uncertainties. An example of the regional difference between the GRACE data and the
IOM solution can be seen in Fig. A1. The details of this difference will be discussed in Sect. 4.

The main topic of this study is to provide improved GrIS regional mass balance estimates from
GRACE and the IOM. We show that the improved GRACE solution brings down the regional
differences between two mass changes estimates, mainly in the southeast GrIS region. Furthermore,
we compare the GRACE solution with the IOM, which employs different reference discharge estimates, showing that the uncertainties in the reference discharge can result in underestimated mass loss rate in the IOM regional solution in particular in the northwest GrIS region.

In Sect. 2, we present SMB mass changes from a recently improved regional atmospheric climate model (RACMO2) (Noël et al., 2015) and discharge estimates of Enderlin et al. (2014), which are based on a near-complete survey of the ice thickness and velocity of Greenland marine-terminating glaciers. In Sect. 3, we introduce the Least Squares inversion approach. In Sect. 4, we firstly investigate different methods to calculate mass changes in basins using the modelled SMB and D estimates. Then we identify the approximation errors in regional mass change estimates from GRACE data. In the end we compare mass change estimates from GRACE and IOM, and discuss remaining differences. Conclusions and recommendations are given in Sect 5.

2 IOM method

2.1 SMB and D

For the GrIS, precipitation (P) in the form of snowfall is the main contribution to the mass input, while mass loss is a combination of sublimation (S), melt water runoff (R), and solid ice discharge (D). Surface mass balance (SMB) equals to P-S-R, and subtracting D from SMB yields the total mass balance (TMB). In this study, we use the Regional Atmospheric Climate Model, version 3 (RACMO2.3) to model the SMB of the GrIS. RACMO2 (Ettema et al., 2009; van Angelen et al., 2012; van den Broeke et al., 2009) is developed and maintained at the Royal Netherlands Meteorological Institute (KNMI) and has been adapted for the polar regions at the Institute for Marine and Atmospheric Research, Utrecht University (UU/IMAU). RACMO2 model output is
currently available at ~ 0.1° spatial resolution for Jan 1958 to Dec 2014. The differences between
a previous model version (RACMO2.1) and other SMB models are discussed by Vernon et al.
(2013). In RACMO2 we assume 20% uncertainties for the P and R components in each grid cell.
Assuming both components to be independent, the uncertainty of the SMB is the quadratic sum of
uncertainties of P and R. Note that the magnitude of S is small and its absolute uncertainty
negligible compared to those in P and R. Note that the RACMO2 model also provides the estimates
of SMB in the peripheral glacier areas, which we have included in this study.

Ice discharge (D) estimates from Enderlin et al. (2014) (hereafter Enderlin-14, with the associated
discharge estimates D-14) are used in this study. In Enderlin-14, the ice thickness of 178 glaciers
is estimated as the difference in ice surface elevations from repeat digital elevation models and bed
elevations from NASA’s Operation IceBridge airborne ice-penetrating radar data while the ice
surface velocity is obtained from tracking the movement of surface features visible in repeat
Landsat 7 Enhanced Thematic Mapper Plus and Advanced Spaceborne Thermal and Reflectance
Radiometer (ASTER) images. For glaciers with thickness transects perpendicular to ice flow (i.e.,
flux gates), the ice flux is estimated by summing the product of the ice thickness and surface speed
across the glacier width. Ice flux for glaciers with only centreline or without thickness estimates is
based on empirical scaling factors as derived in Enderlin et al. (2014). Because the ice fluxes are
calculated within 5 km of the estimated grounding line locations, SMB gain or loss between the
observations and the grounding lines will be small and the ice discharge is estimated directly from
the fluxes (Enderlin et al., 2014). The estimation of discharge uncertainty of 1~5% D for each
glacier is smaller than in previous studies, e.g. Rignot et al. (2008) (hereafter Rignot-08, and the
associated estimates are denoted by D-08), which relied on interior ice thickness estimates that
were assumed constant in time.
2.2. **Cumulative TMB anomaly**

For the whole GrIS or a complete basin from ice sheet maximum height to the coast, the total mass balance is:

\[
TMB = SMB - D \tag{1}
\]

In this study, we further separate each GrIS basin in a downstream (I) and upstream (II) region separated by the 2000m surface elevation contour line. Thus, for the sub-divided regions Eq. (1) becomes:

\[
TMB = TMB^I + TMB^{II} \tag{2}
\]

where

\[
TMB^{II} = SMB^{II} - F^{II} \tag{3}
\]

and

\[
TMB^I = SMB^I + F^{II} - F^I \tag{4}
\]

in which \(F^{II}\) refers to the ice flux across the 2000 m elevation contour, and \(F^I\) refers to the ice flow across the flux gate. Note that \(F^{II}\) is cancelled if the study area includes both the regions below and above the 2000m contour, but \(F^{II}\) has to be considered when the upstream and downstream regions are considered separately. As described above, we assume that SMB changes downstream of the Enderlin-14 flux gates are negligible and that \(F^I = D\).
In order to fit the temporal resolution of the modeled SMB data, we interpolate the yearly D on a monthly basis. Significant seasonal variations in ice velocity have been observed along Greenland’s marine-terminating outlet glaciers (Moon et al., 2014). However, since we focus mostly on long-term changes in mass in this study, monthly variations in D should have a negligible influence on our analysis and we assume that D is approximately constant throughout the year. The monthly GRACE data represent the gravity field of Earth at that particular month. By subtracting the gravity field from a reference period (e.g. the 2003 – 2014 average), the gravity variations with respect to this reference can be obtained. These can be converted to mass variations assuming that all mass variation takes place in a thin layer near to the Earth’s surface. Contrary to the GRACE data, the SMB, D and TMB are estimates of rates of mass change (i.e., mass flux) in Gt per month. Hence in order to compare with GRACE, one has to integrate the SMB and D from a certain month (or year), which yields:

\[ \Delta TMB_i = \int_{t_0}^{t_i} (SMB_t - D_t) dt \]  \hspace{1cm} (5)

where \( \Delta TMB_i \) is the cumulative mass change at month \( i \) in the IOM (unit is Gt) and the integration time period is from a certain initial month \( t_0 \) to month \( t_i \).

In previous studies of mass balance using the IOM, when estimates of D were not available for some regions (Rignot et al., 2008), the 1961 to 1990 reference SMB was used to approximate the missing regional D (Sasgen et al., 2012). Also, due to the uncertainties in the SMB model, accumulating the TMB over a long time period may lead to unrealistic mass gains or losses (van den Broeke et al., 2009). By removing the reference, the influence of the large uncertainties and inter-annual variability in SMB and D can be reduced (van den Broeke et al., 2009). The reference
period is chosen based on the assumption that the mass gain from the surface mass balance during that period is compensated by ice discharge, so the GrIS was in balance (i.e. no mass change).

For the reference period we define the month index to run from \(i_0\) to \(i_1\), and from \(i_2\) to \(i\) afterwards.

Since we assume the GrIS was in balance during this period, \(\int_{i_0}^{i_1} (\text{SMB}_t - D_t) dt = 0\). By removing the reference SMB and D (i.e. SMB_0 and D_0) Eq. (5) becomes:

\[
\Delta \text{TMB}_i = \int_{i_2}^{i} (\delta \text{SMB}_t - \delta D_t) dt \tag{6}
\]

where \(i \geq i_2\), \(\delta \text{SMB}_i = \text{SMB}_i - \text{SMB}_0\) and \(\delta D_i = D_i - D_0\). Note that SMB_0 and \(\delta \text{SMB}_i\) are both rates of mass change, similar to the discharge.

As explained before, when Eq. (6) is used to compute the mass balance for the regions below and above 2000m separately, the ice flux across the 2000m contour (\(F''\)) has to be considered. Because this flux can not be easily measured we introduce two assumptions, i.e. 1) \(F''\) is constant over time, which means \(F'' = F''_0\) (\(F''_0\) is the \(F''\) during the reference period), so \(\int_{i_2}^{i} \delta F''_t dt = 0\), and 2) the separate GrIS interior and coastal regions are all in balance during the 1961 – 1990 reference period, i.e. \(\int_{i_0}^{i_1} (\text{SMB}'_{i_0} - F''_0) dt = 0\) and \(\int_{i_0}^{i_1} (\text{SMB}'_0 + F''_0 - D_0) dt = 0\) Assumption 1) is necessary since there is a lack of yearly measurements of ice velocity across the 2000m contour. An estimate of decadal change by Howat et al. (2011) suggests it is reasonable to assume a constant \(F''\) for the entire GrIS, except for a few glaciers, such as the Jakobshavn glacier in basin 7 where the \(F''\) may be higher than \(F''_0\) after 2000. In Andersen et al. (2015), the mass balance of the interior GrIS (in their study defined as the ice sheet above the 1700 m elevation contour) was 41±61 Gt·yr\(^{-1}\) during the 1961-1990 reference period and in Colgan et al. (2015) the ice flux across the 1700m contour...
was estimated to be 54±46 Gt yr\(^{-1}\) for the same time period, indicating the assumption of balance approximately holds within the uncertainties.

Based on these two assumptions, we apply Eq. (6) to the interior and coastal GrIS regions, yielding:

\[
\Delta \text{TMB}^\text{II}_i = \int_{t_2}^{t_1} \text{SMB}^\text{II}_t \, dt
\]  

And

\[
\Delta \text{TMB}^\text{I}_i = \int_{t_2}^{t_1} (\text{SMB}^\text{I}_t - D_t) \, dt
\]

We quantify the combined uncertainties of assumptions 1) and 2) by comparing the results from Eq. (8) to the regional mass balance derived from GRACE by Wouters and Schrama (2008) and derived from ICESat by Zwally et al. (2011), resulting in ~±15 Gt yr\(^{-1}\) uncertainties for the entire interior GrIS. The regional uncertainties are summarized in Table A2. Note that for each region, the same uncertainty is applied to both the interior and coastal areas. For the whole basin the uncertainties associated with assumption 1) and 2) will vanish, because these two assumptions are needed only when we separate the coastal and interior regions.

3 GRACE

3.1 Post-processing GRACE data

In this study we use the GRACE release 5 level 2 monthly spherical harmonics coefficients \( C_{lm} \) and \( S_{lm} \) (‘GSM’) produced by the University of Texas Center for Space Research (CSR). The time interval is from Jan 2003 to Jan 2014 and the maximum spherical harmonic degree \( l = 60 \). We add
\( C_{10}, C_{11}, \) and \( S_{11} \) coefficients (related to the motion of the Earth’s geocenter) obtained from GRACE data and independent oceanic and atmospheric models (Swenson et al., 2008). The geopotential flattening coefficients \( (C_{20}) \) in GRACE data are less accurate than those from Satellite Laser Ranging (SLR) measurements (Chen et al., 2004). We replace these coefficients with the ones from Cheng et al. (2013). The GRACE potential coefficients are averaged between Jan 2003 and Jan 2014 and this average field serves as a reference to obtain monthly anomalies \( \Delta C_{lm} \) and \( \Delta S_{lm} \).

GRACE observations of mass change within a sub-region of the GrIS are affected by mass changes in neighbouring areas, a phenomenon known as leakage (Wahr et al., 1998). GRACE data should also be corrected for known oceanic and atmospheric mass motions, continental hydrology and Glacial Isostatic Adjustment (GIA). The oceanic and atmospheric mass changes are already removed from the coefficients provided by CSR. The Global Land Data Assimilation System (GLDAS) model (Rodell et al., 2004) is employed to simulate the continental hydrology, which is then removed from the GRACE monthly coefficients. Note that permafrost regions are excluded in the GLDAS version 2 1° monthly data that are obtained from Goddard Earth Sciences Data and Information Services Center.

The GIA effect in the GRACE data for the GrIS is compensated via the model output of Paulson et al., (2007), which is based on the ICE-5G ice loading history and the VM2 Earth model (Peltier 2004). Hereafter we refer to this model by Paulson-07. In addition to this model, alternative GIA models are employed based on different ice history and viscosity models to determine the uncertainty in the GIA correction. For instance, the models of van der Wal et al., (2013) include 3D changes in viscosity and the model of Simpson et al. (2009) uses a different ice loading history, see the summary of the GIA models used in this study in Table A3. An isotropic
Gaussian filter is employed to reduce the noise in GRACE data (Wahr et al. 1998), with a half width of $r_{1/2}=300$ km.

3.2. Inversion of the regional mass balance

To estimate the regional mass balance in separate GrIS basins, we apply a constrained least-squares inversion approach (Bonin and Chambers, 2013; Schrama and Wouters, 2011).

$$\hat{x} = (H^T H + P^{-1})^{-1} H^T y$$

The vector $y$ contains the monthly GRACE data. To compute the influence functions in the design matrix $H$ we assume a layer of water with unit height uniformly distributed over the mascon, then express the mass change in spherical harmonic coefficients up to degree and order (d/o) 60, similar to the GRACE data. The vector $\hat{x}$ represents the scale factors for the unit mass changes in each basin that we aim to find. $P$ is the covariance matrix of the mass changes in each mascon. When assuming that the mass changes in each equally weighted mascon are independent then $P = \lambda I$, with $\lambda$ the prior variance of the regional mass changes. In our previous study, we demonstrated that three different prior variances for the GrIS regions below and above 2000m, as well as for the surrounding Arctic regions respectively improved the recovery of regional mass changes (Xu et al. 2015). Using a simulation model based on the IOM (see Sect. A3) optimal regional constraints were determined, i.e. for coastal mascons $\lambda_a = 13m^2$, for inland mascons $\lambda_b = 0.1m^2$ and for the nearby surrounding EBIS regions (Ellesmere island, Baffin island, Iceland and Svalbard) $\lambda_{EBIS} = 11m^2$. 
4 Cross-validation

4.1 Reference SMB and D

In this study, the error in $\sigma_{SMB_0}$, hereafter $\sigma_{SMB_0}$ involves the systematic error caused by the assumption of a reference period and the fact that averaging within the chosen reference period results in an error. Both parts will be explained hereafter.

The systematic error is the uncertainty in the SMB derived from model output and the averaging error is related to the variability of the reference SMB$_0$ during 1961-1990. To quantify the latter, we apply a Monte-Carlo simulation to evaluate the standard deviations of the SMB$_0$ resulting from using different combinations of a 20-year average of SMB. The sampled combinations are randomly chosen from the months between 1961 and 1990, following van den Broeke et al. (2009).

For RACMO2, we find 20 Gt·yr$^{-1}$ averaging errors in $\sigma_{SMB_0}$. The SMB$_0$ from RACMO2 yields 403 Gt·yr$^{-1}$ hence the systematic error is approximately 73 Gt·yr$^{-1}$ (considering 18% uncertainty in RACMO2). If we assume both errors are independent then $\sigma_{SMB_0} = 75$ Gt·yr$^{-1}$.

We also investigate the uncertainties of the 1961 – 1990 reference discharge. In this study we employ D-14 as the D estimates in IOM. However the D-14 time series starts from the year of 2000 when the GrIS already was significantly out of balance. In order to retrieve D$_0$ for D-14 (D$_0$-14), we employ the D$_0$=413 Gt·yr$^{-1}$ in 1996 from D-08 (D$_0$-08) for the entire GrIS, and assume that the regional D changes from 1990 to 2000 in D-08 are proportional to the changes in D-14 in each region, i.e. D-14 and D-08 are linearly related. The details of the interpolation of the regional D$_0$ are given in Sect. A1. Note that the averaging error in D$_0$ is minimized via an iteration process, the details can be found in Rignot et al. (2008). Due to the lack of ice thickness information before 2000, the reference D$_0$ in Rignot-08 has high uncertainty, especially in the northwest of the GrIS.
Another way to obtain historic discharge estimates is by using the presumed correlation between discharge and SMB or run-off (Rignot et al., 2008; Sasgen et al., 2012). The approach assumes that the anomaly of the discharge with respect to a reference SMB ($\delta D = \text{SMB}_0 - D$) is correlated with the anomaly of the 5-year averaging runoff with respect to a reference runoff ($\delta R = R - R_0$). Note that the lagging correlation is also discussed in Bamber et al. (2012) and Box and Colgan (2013).

In this study we choose to use the runoff output from the RACMO2 model. We consider three estimates of D, i.e. by Rignot-08, Enderlin-14 and Andersen et al. (2015), based on different measurements of the ice thickness and flux velocity changes, integration areas (areas between the flux gate and the grounding line), SMB and ice storage corrections and whether the peripheral areas are included or not.. For the entire GrIS, we obtain a high correlation ($R^2 = \sim0.86$), similar to the correlation found by Rignot et al. (2008), but the regional correlations are lower and vary from 0.19 to 0.94. In this study we provide runoff-based estimates for $D_0$ only those ice sheet basins where the correlation between $\delta D$ and $\delta R$ is strong (Fig. 2). In DS7 and DS8, the discharge anomaly is obviously correlated with the runoff anomaly ($R^2 > 0.9$), while in other regions (i.e. in DS2, DS4, DS5 and DS6), the correlation is low ($R^2 < 0.5$). In DS3a, when we consider only the D estimates from Enderlin-2014 and Andersen-2015, the correlation increases to $R^2 = 0.72$. Note that the regions with high correlation are also those that have a large fraction of marine-terminating glaciers. We derive the linear relation between $\delta D$ and $\delta R$ for 8 major GrIS DS and calculate the regional annual $\delta D$ from 1960 to 2013 using this linear relation.

Hereafter, the regional cumulative discharge anomaly ($\delta D$), which is derived from the RACMO2 runoff, is denoted as $D^R$, while $D^{D-08}$ and $D^{D-14}$ refer to $\delta D$ based on Rignot-08 and Enderlin-14, respectively. We compare $D^R$, $D^{D-08}$ and $D^{D-14}$ in Fig. 3 for the time interval 2000 to 2007, which is common to both $D^{D-08}$ and $D^{D-14}$. In DS7, where $R^2 = 0.94$, $D^{D-08}$ and $D^{D-14}$ are similar, $20.1 \pm 1.9$
Gt yr\(^{-1}\) and 17.6±2.2 Gt yr\(^{-1}\) respectively. However, in the same region, D\(^R\) is 8.9±4.7 Gt yr\(^{-1}\). The difference between the runoff-derived and flux gate D estimates may indicate that the reference D\(_0\) for this region should be ~9 Gt yr\(^{-1}\) lower than D\(_0\) estimated by Rignot-08. A similar difference can be seen in DS4 where we obtain 36.2±2.5 Gt yr\(^{-1}\) for D\(^{D-14}\) and 37.9±2.8 Gt yr\(^{-1}\) for D\(^{D-08}\), but D\(^R\) is 8.4±3.3 Gt yr\(^{-1}\). However, in DS4, D\(^R\) is probably not reliable as the runoff–to-discharge correlation is weak in this region (R\(^2\) = 0.38). For the entire GrIS, the reference D\(_0\) is 427±30 Gt for D\(^{D-08}\), and 414 ±44 Gt for D\(^{D-14}\). When applying the runoff based interpolated D\(_0\) only for DS1, DS3, DS7 and DS8, with the rest of DSs using D\(^{D-14}\), D\(_0\) becomes 410 ±37 Gt, i.e. e all three versions of reference discharge agree within the uncertainties for the entire GrIS.

In order to evaluate the SMB\(_0\) and D\(_0\) used in this study, we compare the IOM regional mass balance in 8 major basins (interior and coastal regions are combined), and apply both Eq. (5) and Eq. (6). The latter equation relies on the determination of the SMB\(_0\) and D\(_0\) while Eq. (5) does not, so the comparison can provide an indication about the reliability of the SMB\(_0\) and D\(_0\) for some basins. For the application of equation (6) we use two methods. Method 2 uses D\(^{D-14}\) while method 3 uses D\(^R\) in DS1, 3, 7 and 8. As can be seen in Fig. 3, the three methods agree for the whole GrIS and for most of the basins within the uncertainties. In DS4, 7 and 8, however, methods 1 and 2 are significantly different, which may be caused by underestimated cumulative errors in Eq. (5) or less accurate reference SMB\(_0\) and D\(_0\). This is further discussed in Sect. 4.3.

4.2. Approximation errors

In the solution of \(\hat{\mathbf{x}}\), two types of errors occur: a) systematic errors are caused by measurement errors propagated through the least-squares approach and b) the additional error that is introduced when applying Eq. (9). For the type b) error, Bonin and Chamber (2013) show that Eq. (9) leaves
a noticeable difference between the approximation $\hat{\mathbf{x}}$ and the “truth” (a GrIS mass changes simulation), in particular in GrIS sub-regions, which we categorize as an error source, see also the discussion in Tiwari et al. (2009). Hereafter the type b) error is denoted as 'approximation error' or $\varepsilon$. We estimate $\varepsilon$ by using simulations of GrIS as $\mathbf{x}$, following Bonin and Chambers (2013) so that the approximation error becomes $\varepsilon = \mathbf{x} - \hat{\mathbf{x}}$. The simulated regional mass changes on the mascons are $\mathbf{x} = [x_1, x_2, x_3, \ldots, x_n]$, where $n$ is the total number of mascons. We will show that there is a relation between $\hat{\mathbf{x}}$ and $\mathbf{x}$ which can be used to correct for the approximation error.

The simulation model $\mathbf{y} = f(\theta, \lambda)$ is based on a 10 year linear trend (2003 to 2012) of mass changes of SMB and D estimates (see Sect. A3), with uncertainties of the simulation model written as $\mathbf{\sigma}(\theta, \lambda)$. We employ a Monte-Carlo approach to simulate a sample of 1000 randomly distributed observations, according to $\mathbf{y}_i' = \mathbf{y} + \mathbf{k}_i \mathbf{\sigma}$ with $\mathbf{k}_i = k_i(\theta, \lambda)$ a vector of random scaling factors varying from -1 to 1, and index $i$ running from 1 to 1000. Hereby it is important to note that we assume that measurement errors do not exist (i.e. the simulation model is assumed to be reality). In addition we assume that the generated samples in the simulation ($\mathbf{\sigma}$) are normally distributed.

Next we apply Eq. (9) to yield approximated regional mass changes $\hat{\mathbf{x}} = [\hat{x}_i]$, in which $i$ is the index of the mascons (see Fig. 1). The real regional mass change rate $\mathbf{x} = [x_i]$ are known from the simulation. As mentioned above, the difference between $\hat{\mathbf{x}}$ and $\mathbf{x}$ equals the approximation error. In Fig. 4 we show that the $x_i$ are linearly correlated with $\hat{x}_i$. By applying this correlation to the approximations derived from GRACE data, one can reduce the approximation errors in the GRACE based regional mass balance approximations.

The simulated trend in regional mass changes and the corresponding approximation are shown in Fig. 4. It can be noticed that the approximations are strongly correlated with the simulation in the
coastal regions over time with an average correlation coefficient $R^2 = 0.9$. This means that the approximated regional solutions are close to the simulation. The correlation in region DS1a is weaker (~0.6), which suggests that the approximation for region DS1a is influenced more by mass changes in neighbouring regions such as region DS8a. In the simulation the inter-region correlation between DS1a and DS8a is $-0.1$, while in the approximations, the correlation rises to $-0.5$. By comparison, another neighbour of DS8a, DS7a, has a very weak inter-region correlation with DS8a both in the simulation and in the approximation (~0.04). The inter-region correlation errors are systematic error resulting from the least-squares inversion (Bonin and Chambers, 2013; Schrama and Wouters, 2011). Previous work shows that the regional approximation errors can be reduced when specifying constraints for the GrIS coastal and inland regions separately (Xu et al. 2015), but within the coastal region all the sub-DSs are constrained by the same prior variance in this study, thus the increase in correlation between DS1a and DS8a remains.

For the coastal regions, there is a linear relationship between the simulations $\mathbf{x}$ and the approximation $\hat{\mathbf{x}}$, as can be seen in Fig. 4. We fit this relationship by $\mathbf{x} = \alpha_1 \hat{\mathbf{x}} + \alpha_0$, with a summary of $\alpha_1$ and $\alpha_0$ given in Table A1. The linear relationship between the simulated and the approximated regional mass changes rates is found to be stable; even when the simulation uncertainties are multiplied with a factor or 5 (light green marks in Fig. 4), the average regression parameters ($\alpha_1$ and $\alpha_0$) vary by less than ~1% for the coastal mascons. Therefore it is reasonable to assume that $\alpha_1$ and $\alpha_0$ reflect the relationship between the reality and the approximation, as derived from GRACE observations. When the vector of observations $\mathbf{y}$ becomes the GRACE observations, the corresponding approximation $\hat{\mathbf{x}}$ can be improved by applying the linear relationship to. We will show that this correction yields a better agreement between GRACE and the IOM in Sect. 4.3.
Contrary to the coastal regions, the linear relation between $x$ and $\hat{x}$ is weak in the interior regions, where the mean correlation coefficient is ~0.2. This may be because interior regions show smaller mass change rates than the coastal regions. For simulations created within a 1σ range, the highest correlation coefficient is only 0.47 for DS7b. The strong constraint used for these regions, i.e. a prior variance of 0.1 m$^2$, may cause the approximation to be more determined by this constraint than the simulation. However, if we apply a weaker constraint, i.e. $\lambda = 10^6$, the correlation coefficients between $x$ and $\hat{x}$ in these regions remain below 0.5. This means that correcting the approximation errors using the same method as for the coastal regions may create larger uncertainties. Following Bonin and Chambers (2014), we choose to include the approximation errors in the uncertainties but only for the interior regions. The uncertainties are shown in Table A2.

4.3. Results and discussions

We compared the regional mass changing rate from GRACE with the IOM (Fig. 5) before and after applying the approximation error correction to GRACE and with different discharge estimations implemented by the IOM, separately for coastal and interior regions. For the coastal regions, we find that the correction of the approximation errors in the GRACE solutions shifts the mass distributions between adjacent mascons. For instance, the corrected mass loss rate in DS3a increases by 10 Gt yr$^{-1}$ while it reduces the mass loss rate in the adjacent region DS4a by 15 Gt yr$^{-1}$. In mascon DS5a, DS6a and DS7a, the combined mass change rate is -107±8 Gt yr$^{-1}$ before correcting and -106±8 Gt yr$^{-1}$ after correcting for regional approximation errors. In mascon DS6a correcting for the approximation error causes a mass loss increase of 13 Gt yr$^{-1}$. 
In the comparison we only consider TMB from the IOM in order to reduce the influence of the individual uncertainties in SMB and D. We obtain two IOM solutions, using the reference D₀ by Rignot-08 (method 2) and the interpolated discharges based on RACMO2 runoff (method 3). In mascon DS1a and DS3a, we obtain lower discharge changes rate from method 3 than from method 2. In mascon DS7a, which includes Jakobshavn glacier, method 3 results in smaller mass changes than method 2.

Fig. 5 shows that agreement between GRACE and IOM improves after correcting the GRACE approximation errors and applying the runoff based discharge estimations in mascon DS3a, DS5a, DS6a and DS7a. The difference between GRACE and IOM estimates is also reduced in DS1a and DS2a, where the remaining difference falls within the uncertainty margins. The corrected GRACE solution in DS4a is only ~3 Gt·yr⁻¹ lower than the IOM solution while it was 10 Gt·yr⁻¹ higher before correction. However, regardless of correcting the approximation errors, the GRACE inferred regional mass balance agrees with IOM mass balance in DS4a due to the large uncertainties in the GRACE solution and the RACMO2 model there, i.e. ±17 Gt·yr⁻¹ (see Table A2). From Fig. 5 we can also make some inferences about the effect of using different methods to estimate the reference discharge. Only in mascon DS8a, IOM and GRACE do not agree within the uncertainties. Previous studies, e.g. Bolch et al. (2013) and Gardner et al. (2013), show that approximately 40Gt·yr⁻¹ mass losses are from the peripheral glaciers. Yet, these portion of mass losses are not considered in our IOM solution. However, given the relationship we found in our discharge data between glacier width and area for the ice sheet's marine-terminating glaciers, we suspect the discharge from these glaciers is quite small and the regional mass changes in these glacier areas are dominated by changes in SMB. The GRACE-IOM difference will likely be on the order of several Gt·yr⁻¹ due to
the exclusion of discharge from peripheral marine-terminating glaciers and ice caps as long as we
consider the SMB for the whole of Greenland, not just the ice sheet.

For the regions above 2000 m altitude, GRACE inferred regional mass change rates agree with the
RACMO2 SMB estimations within uncertainties (see Fig. 5). A noticeable mass increase appears
in both GRACE and IOM solutions in mascon 2b (northeast interior). A second observation is that
in the IOM, the runoff dominates the regional mass balance on the edge of the southern GrIS
interior resulting in mass loss of -8 Gt∙yr⁻¹. The overall IOM uncertainties in the coastal regions
are mainly influenced by the uncertainties in SMB and D estimates, meanwhile applying the
assumptions on the flux across the 2000m contour (FII) contributes additional uncertainties in the
GrIS interior regions. In the GRACE solution, the uncertainties are due to the errors in the GRACE
coefficients which is not dependent on the altitude, therefore the uncertainty level is similar to the
coastal regions.

We also compare our GRACE and IOM solutions to other studies based on GRACE, IOM and
ICESat altimetry, as shown in Table 1. All listed GRACE solutions agree within uncertainty levels
in DS1, DS2, DS3, DS5 and DS8. In line with some of the referenced studies, we combine DS6
and DS7. We find a larger rate of mass loss in this area compared to other studies (i.e. -87±10
Gt∙yr⁻¹) because a longer time interval is considered in this study and mass loss accelerates by ~-
16 Gt∙yr⁻² over the entire period according to our solution. After accounting for this acceleration,
all GRACE solutions become similar in this combined region.

In the southeast region DS4, the regional acceleration of mass loss is negligible (~-0.1 Gt∙yr⁻²).
When comparing different GRACE solutions, the mass loss rate in DS4 ranges from -28±7 Gt∙yr⁻¹
to -51±6 Gt∙yr⁻¹. It suggests that a large approximation error, which is associated with different
approximation approaches, is likely present in this region in the GRACE solution. As shown in Fig. 5, the regional mass change is reduced by 29% in this region after applying the correction.

The IOM is also relatively uncertain in DS4 (Sasgen et al., 2012). Even if the mass changes rates are very different between GRACE and IOM in this region, agreement is obtained within the large uncertainties. For ICESat-based mass loss estimates, the retrieved long-term mass loss can be very different, e.g. -75±2 Gt·yr⁻¹ by Zwally et al. (2011) compared to -40±18 Gt·yr⁻¹ by Sørensen et al. (2011). This may be explained by the complicated regional ice surface geometry in the coastal areas (Zwally et al., 2011), or uncertainty resulting from the conversion of height changes to mass changes, e.g. different firn corrections and density conversions.

Another area where GRACE and IOM do not agree is the northwest (region DS8). In this region, mass loss is accelerating by -3±0.4 Gt·yr⁻² and -5±1 Gt·yr⁻² according to our GRACE solution and IOM solution respectively. If we extend the time interval to 2013, we find that GRACE and ICESat solutions suggest a similar mass loss rate (see Table 1). Moreover, if we determine the mass change rates for the time interval from 2007 – 2011, the rate is -57±6 Gt·yr⁻¹ (GRACE) and -49±11 Gt·yr⁻¹ (IOM), and both agree with the rate from Andersen et al. (2015). We have reduced the approximation error in the GRACE solution for this region, although by a small amount (-2.3 Gt·yr⁻¹).

There is another way to judge whether approximation errors exist in GRACE. When the approximation errors exist for one region, the error is likely of similar magnitude but of opposite sign in neighbouring regions, which we refer to as negative correlation errors (Xu et al. 2015). In this study, the adjacent regions of DS8 are DS1, DS7 and Ellesmere Island (northern Canadian Arctic) and in all three neighbour regions, the mass changes rate between GRACE and IOM
solutions are similar, see Fig. 5. Note that Ellesmere Island is not shown in this figure; the
 corresponding changes rates are -36±7 Gt yr⁻¹ and -29.4±3 Gt yr⁻¹ in IOM and GRACE solutions
 respectively. This suggests that the difference of the regional mass changes in DS8 is not due to
 the approximation error in the GRACE solution because there is no negative correlation between
 adjacent areas. The uncertainties of the GIA effect are included as part of the uncertainties of the
 GRACE solution for this region as well (see Table A3), but adding these still cannot bridge the gap
 between GRACE and IOM. The ICESat-based mass change estimate by Kjeldsen et al. (2013)
 yields a mass loss rates of 55±8.4 Gt yr⁻¹ from 2003 to 2010, which is consistent with the GRACE
 solution in this study. All evidence combined indicates that the IOM method underestimates the
 mass loss rate in this basin by ~15 Gt yr⁻¹. In Sasgen et al. (2012), the discharge estimations from
 Rignot-08 are used, in which a portion of DS8 was un-surveyed, to which they ascribed the
difference between GRACE and IOM (24±13 Gt yr⁻¹). In this study, the discharge estimation from
 Enderlin et al. (2014) covers the entire glacier area in this region, but only for the years after 2000.
Therefore, despite observations of relatively stable terminus positions for the majority of the
marine-terminating glaciers in northwest Greenland between 1985-2000 (Howat and Eddy, 2011),
we hypothesize that the estimated reference discharge over-estimates the regional D₀. Deriving D₀
from D-14 involved the assumption that D from 1990 to 2000 follows Rignot-08, which contains
high regional uncertainties. On the other hand, if we use the runoff-based estimate of D₀,
uncertainties are influenced by the uncertainty of the RACMO2 model. The SMB inter-comparison
study of Vernon et al. (2013) shows that the 1961-1990 reference SMB₀ of RACMO2 model is
larger than some other SMB models, e.g. MAR or PMM5. It is interesting to see that when the
cumulative TMB is calculated independently from the reference SMB₀ and D₀ (using Eq (5),
method 1), the mass changes rate agrees with the GRACE mass balance in this region within
uncertainties. This indicates that modelled SMB (as well as SMB₀) could have uncertainties that are larger than 18%.

5 Conclusions

In this study, we implement a simulation of GrIS mass changes and show that the approximation errors caused by the Least Squares inversion approach can be quantified and furthermore be reduced in the GRACE solution. For using the IOM, we apply an improved reference discharge estimate that agrees better with other independent estimates in most basins. We show that the regional differences between our GRACE and IOM solutions are reduced and agree within the calculated confidence intervals. This is confirmed by an inter-comparison with ICESat based regional mass change rates. In the southeast, the corrections for the approximation errors in GRACE are especially important. We find that the IOM solutions underestimate mass loss in the northwest compared to GRACE and ICESAT solutions, which we attribute to incorrect estimates in reference D and/or SMB used to construct the IOM estimates. For the whole GrIS and considering the early half of the comparison time window, we find a 208±18 Gt·yr⁻¹ mass loss rate for the period 2003 to 2008 from the GRACE solution, while the IOM solution shows a mass loss rate of 195±25 Gt·yr⁻¹. The loss rates increase by ~67% and ~85% in 2009-2014 in the GRACE and IOM solutions, respectively. The 10-year acceleration in the GRACE data is -25±8 Gt·yr⁻², consistent with the IOM solution, -26±12 Gt·yr⁻².

Acknowledgements. This research is funded by means of scholarship GO-AO/27 provided by the Netherlands Organization of Scientific Research, NWO. We are grateful to Ian Joughin for the suggestions of estimating the ice flux at high elevation. Furthermore the authors acknowledge the thoughtful comments by Etienne Berthier and three anonymous referees of this manuscript.
Appendix A

A1: Reference discharge based on the pre-1960 discharge estimations

The GrIS ice discharge $D$ was distributed into 34 glaciers by Rignot et al. (2008), denoted by $D_{-08}$. The reference discharge $D_{0-08}$ is taken as the discharge estimate for the year of 1996. We label the discharge in 1996 and 2000 as $D_{0-08}$ and $D_{2000-08}$, respectively. The deviations between $D_{0-08}$ and $D_{2000-08}$ are due to the discharge changes in the late 1990s (Enderlin et al., 2014). Similarly, we define Enderlin-14 as $D_{-14}$, with the time series starting from the year of 2000 ($D_{2000-14}$). In order to estimate the reference discharge $D_{0-14}$, we find scaling factors between $D_{0-08}$ and $D_{2000-08}$ and scale the $D_{2000-14}$ to yield the estimation of $D_{0-14}$. We estimate the uncertainties of estimated $D_{0-14}$ via 500 pairs of randomly generated $D_{0-08}$, $D_{2000-08}$ and $D_{2000-14}$, following from a normal distribution $N(D, \sigma_D)$, in which $\sigma_D$ is the error in the discharge estimations. For the entire GrIS, we find that the interpolated $D_{14_0} = 413.8\pm31.6$ Gt, similar to previous studies (Sasgen et al., 2012; van den Broeke et al., 2009).

A2 Approximation error correction

In order to determine the linear relationship between the simulated regional mass balances with the associated approximations after applying the Least Squares inversion, the linear fitting parameters $k_0$ and $k_1$ are calculated for different simulation error levels, the values of which are shown in Table A1. The values of $k_0$ and $k_1$ and their uncertainties vary slightly in all coastal regions. In order to determine one value for $k_0$ and $k_1$, we assume the $k_0$ and $k_1$ follow a normal distribution in each region and draw 1000 random samples for each error level. Then we combine all the samples and fit into another normal distribution from which the $k_0$ and $k_1$ are determined for each region (see the Table A1).
A 3 The GrIS simulation

The GrIS monthly mass balance simulations that will be used in section 4.2 are based on the RACMO2 model and the discharges estimates from Enderlin et al., (2014). Note that the discharge estimates are given the form of lumped mass change for 178 different geographical locations. To get SMB and D estimates for each basin we sum the discharges for all glaciers or the gridded SMB values within each basin, respectively. We interpolate SMB and D onto a gridded map of EWH with a resolution of 1 arc degree for the GrIS and surrounding areas. To account for leakage from outside the GrIS, as occurs in GRACE, we apply the annual mass changes estimates from Schrama et al. (2014) for all the major glacier areas (GrIS excluded). We convolve the gridded mass distribution over the Earth’s surface and obtain the potential coefficients in response to this distribution up to d/o 60. Noise in the monthly GRACE coefficients manifests mainly as north-south stripes in the spatial domain (Swenson and Wahr, 2006). In order to mimic this error in the simulation, we add randomly generated noise as described in Bonin and Chambers (2013) to the potential coefficients. The simulation model was discussed in details in Xu et al., (2015). Note that for this study we focus on the discussion of long term linear trend, thus the linear trend of the monthly simulation is used as the simulation model for later use.

A 4 Uncertainty estimations

A summary of the uncertainties in the regional mass balance (linear trend) is shown in Table A2. In our GRACE inferred mass balance, the uncertainties are associated with the standard deviations of the CSR RL05 GRACE spherical harmonics coefficients (including the standard deviations of the external degree l = 1 and 2 coefficients), the variations of the regional mass changes due to different GIA models and the uncertainties due to the corrections of the systematic error in the
least-squares inversion solutions. The uncertainties of the IOM inferred mass balance consist of
the uncertainties of the 1960 – 1990 reference in SMB₀ and in D₀ and 2b) the systematic error in
the SMB (RACMO2) and 2c) the errors in the yearly D estimations (Enderlin 2014 and Rignot
2008).

5 Selection of the GIA model for GrIS regions.

6 We apply the GIA correction to the GRACE data using 11 different GIA models before estimating
the associated regional mass changes in 20 GrIS and surrounding Arctic regions (see the mascon
definition in Sect. 3). After comparing with one solution without applying GIA correction, we
assume the differences are the regional GIA effects. In addition to Paulson-07 GIA model, we use
a GIA model with lateral changes in viscosity and the ICE-5G loading history (van der Wal et al.
2013).

7 Moreover, we use 8 different GIA models based on the ice history model from Simpson et al.
(2009), provided by Glenn Milne within the scope of the IMBIE project. The upper mantle
viscosity ranges from $0.3 \times 10^{21}$ to $1 \times 10^{21}$ Pa·s and the lower mantle viscosity ranges from $1 \times 10^{21}$
to $10 \times 10^{21}$ Pa·s. The thickness of the lithosphere is assumed to be 96 km or 120 km.

8 In Table A3, the GIA related mass changes can vary from -7 Gt·yr⁻¹ to 10 Gt·yr⁻¹ for the entire
GrIS. A positive GIA effect appears in the northern GrIS while in the south and southwest GrIS,
(DS5a to DS7a) negative GIA signals prevail.

9 In order to quantify the uncertainties of the regional GIA in the Paulson-07, since it is the GIA
model we used to derive our GRACE solution, we estimate the standard deviation of all models
with respect to Paulson-07. The uncertainties are summarized in Table A2.
Figures

Figure 1. The GrIS mascon layout, based on the basin definition by Zwally (2012). The mascon with the same digits refer to a region belonging to the same drainage system. The characters “a” and “b” indicate the GrIS margin (<2000 m) and GrIS interior (≥2000 m), respectively. There are 16 GrIS mascons and 4 neighbouring Arctic mascons. The location of the three largest discharge outlets are marked with a star, i.e. Jakobshavn (green), Kangerdlugssuaq (red) and Koge Bugt (blue) glaciers. The glacier area is defined in the RACMO2 model.
Figure 2. Correlation between the anomaly of the discharge $\delta D$ with respect to a reference SMB (y-axis) and the 5-year averaging runoff $\delta R$ (x-axis) in GrIS regions. The symbols with different colours refer to different estimates of D. The grey bars for both $\delta D$ and $\delta R$ indicate the errors. The correlation coefficients $R^2$ are also shown in each plot.
Figure 3. The comparison between cumulative TMB (2000-2012) obtained with three different methods. Method 1, using no reference TMB, is shown with a green curve. The cumulative TMB obtained with a 1960 – 1990 reference TMB is shown with a red curve (method 2) and blue markers (method 3). Method 2 and Method 3 compute the reference discharge in a different way. In method 2, $D_0$ is based on the estimation from Rignot-08 and for the years after 2000, the estimation from D-14 is used ($D^{D-14}$). Method 3 interpolates the reference discharge using the modelled runoff data (only in DS1, 3, 7 and 8), denoted as $D^R$. $D^{D-08}$ refers to the discharge changes by D-08. All the discharges are shifted upward by 200 Gt for visualization purposes. The numbers in each plot indicate the annual TMB change rates with the unit Gt·yr$^{-1}$. The x-axis shows the last two digits of the years from 2000 to 2012.
Figure 4. Correlation between the linear trend in the simulations $x'$ (y-axis) and the corresponding approximation $\hat{x}'$ (x-axis). The unit is in Gt·yr$^{-1}$. The colours are associated with the changing range of $x'$ for a standard deviation going from $1\sigma$ to $5\sigma$. The numbers refer to the $R^2$ coefficient for three different $\sigma$. 
Figure 5. Comparison of the regional mass changes rate between the GRACE solution and the IOM solutions. Each column refers to one complete basin according to Zwally (2012). The regional mass change rates from GRACE before correcting for the approximation error, are represented by the light blue hollow squares; the filled dark blue squares indicate the mass change rates after implementing the correction. The numbers show the mass changes rate in blue and red colours which indicate the GRACE solution and IOM solution respectively. The dashed line separates the solutions from the interior regions (above the dashed line) from the coastal regions (below the dashed line). The error bars are estimated in Sect. A4.
Figure A1. The Equivalent Water Thickness of the linear trend (a1) and accelerations (a2) in CSR release 5 level 2 GRACE data. The linear trend (b1) and the accelerations (b2) of the IOM solution in EWH. The time interval is from Jan 2003 to Jan 2012. The Gaussian filter halfwidth in all plots is \( r_{1/2} = 300 \) km.
### Tables:

Table 1: Linear trends in the mass changes in GrIS regions based on satellite gravity data (GRACE), IOM output and altimetry data (ICESat). The unit is Gt·yr⁻¹. The studies are: Zwally et al., 2011; Sasgen et al., 2012; Barletta et al., 2013; Colgan et al., 2013; Groh et al., 2014; Andersen et al., 2015; Sørensen et al., 2011.

<table>
<thead>
<tr>
<th>Basin</th>
<th>DS1</th>
<th>DS2</th>
<th>DS3</th>
<th>DS4</th>
<th>DS5</th>
<th>DS6</th>
<th>DS7</th>
<th>DS8</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study (2003-2013)</td>
<td>-22±4</td>
<td>-8±4</td>
<td>-36±5</td>
<td>-51±6</td>
<td>-20±6</td>
<td>-47±8</td>
<td>-40±5</td>
<td>-50±4</td>
</tr>
<tr>
<td>Colgan (2003 - 2010)</td>
<td>-21±6</td>
<td>1±6</td>
<td>-47±13</td>
<td>-28±7</td>
<td>-24±4</td>
<td>-33±7</td>
<td>-23±9</td>
<td>-42±12</td>
</tr>
<tr>
<td>Sasgen (2003 - 2010)</td>
<td>-16±5</td>
<td>-12±5</td>
<td>-38±6</td>
<td>-42±6</td>
<td>-24±6</td>
<td>-56±7</td>
<td>-53±7</td>
<td></td>
</tr>
<tr>
<td>Barletta (2003-2012)</td>
<td>-17±2</td>
<td>-12±2</td>
<td>-36±4</td>
<td>-35±3</td>
<td>-23±2</td>
<td>-66±4</td>
<td>-44±4</td>
<td></td>
</tr>
<tr>
<td>IOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study (2003 - 2013)</td>
<td>-26±8</td>
<td>-10±6</td>
<td>-39±8</td>
<td>-59±18</td>
<td>-18±7</td>
<td>-46±14</td>
<td>-38±6</td>
<td>-35±8</td>
</tr>
<tr>
<td>Sasgen (2003-2010)</td>
<td>-20±4</td>
<td>-16±5</td>
<td>-31±8</td>
<td>-66±21</td>
<td>-20±7</td>
<td>-66±20</td>
<td>-26±12</td>
<td></td>
</tr>
<tr>
<td>ICESat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zwally -11 (2003-2007)</td>
<td>1±0</td>
<td>13±0</td>
<td>-51±1</td>
<td>-75±2</td>
<td>-10±0</td>
<td>-4±0</td>
<td>-14±0</td>
<td>-33±1</td>
</tr>
<tr>
<td>Sørensen (2003 - 2009)</td>
<td>-16±1</td>
<td>-16±3</td>
<td>-40±18</td>
<td>-43±11</td>
<td>-26±5</td>
<td>-51±7</td>
<td>-53±3</td>
<td></td>
</tr>
</tbody>
</table>
Table A1: The linear fit parameters $k_0$ and $k_1$ describing the relationship between the regional simulated mass balance and the approximations obtained after the inversion procedure as applied to GRACE data of the coastal regions. For the interior GrIS regions, we show the approximation errors as additional uncertainties.

<table>
<thead>
<tr>
<th>mascon (&lt; 2000m)</th>
<th>DS1a</th>
<th>DS2a</th>
<th>DS3a</th>
<th>DS4a</th>
<th>DS5a</th>
<th>DS6a</th>
<th>DS7a</th>
<th>DS8a</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_0$ (Gt)</td>
<td>-10.93±1.46</td>
<td>-0.64±0.54</td>
<td>6.82±1.47</td>
<td>-14.90±1.54</td>
<td>-1.86±1.61</td>
<td>-17.15±1.54</td>
<td>2.54±2.23</td>
<td>0.28±1.02</td>
</tr>
<tr>
<td>$\alpha_1$</td>
<td>0.85±0.03</td>
<td>1.02±0.02</td>
<td>0.95±0.01</td>
<td>0.96±0.02</td>
<td>0.90±0.01</td>
<td>0.90±0.02</td>
<td>0.97±0.01</td>
<td>1.00±0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mascon (≥ 2000m)</th>
<th>DS1b</th>
<th>DS2b</th>
<th>DS3b</th>
<th>DS4b</th>
<th>DS5b</th>
<th>DS6b</th>
<th>DS7b</th>
<th>DS8b</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncertainty (Gt⋅yr$^{-1}$)</td>
<td>0.28</td>
<td>0.35</td>
<td>0.45</td>
<td>0.6</td>
<td>2.88</td>
<td>5.1</td>
<td>0.67</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Table A2: The uncertainties associated with the regional mass changes rate. For the GRACE inferred regional solutions, “coef.std” refers to the errors due to the standard deviations in the CSR RL05 spherical coefficients, “GIA” refers to the errors obtained from comparing 11 GIA models. Note that the GIA uncertainties in the interior GrIS are all close to 0 thus they are neglected. In the column with the header “Cor” we show the uncertainties which are caused by the approximation error correction. For SMB and D trend estimations, the uncertainties consist of the reference SMB\textsubscript{0} and D\textsubscript{0} error (“SMB\textsubscript{0}” and “D\textsubscript{0}”) and the systematic errors in RACMO2 model and in the discharge estimations (“sys”). The column labeled with “Cum. Uncer” refers to uncertainties using the assumptions 1) and 2), see the details in Sect. 3.2. The highlighted columns show the total uncertainties of the linear fit of the GRACE and IOM mass balances.

<table>
<thead>
<tr>
<th>Mascon</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coef.std (1a)</td>
<td>GIA (2a)</td>
<td>Cor (3a)</td>
<td>Total</td>
<td>SMB\textsubscript{0} (1b)</td>
<td>Sys (2b)</td>
<td>Total</td>
<td>D\textsubscript{0} (1c)</td>
<td>Sys (2c)</td>
</tr>
<tr>
<td>DS1a</td>
<td>1.9</td>
<td>3.9</td>
<td>1.6</td>
<td>3.4</td>
<td>1.9</td>
<td>7.2</td>
<td>7.6</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>DS2a</td>
<td>2.1</td>
<td>2.2</td>
<td>0.6</td>
<td>2.8</td>
<td>1.6</td>
<td>5.8</td>
<td>6</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>DS3a</td>
<td>3.2</td>
<td>3</td>
<td>1.5</td>
<td>4.3</td>
<td>3.6</td>
<td>6.8</td>
<td>7.8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>DS4a</td>
<td>3.8</td>
<td>2.6</td>
<td>8.8</td>
<td>10</td>
<td>8.6</td>
<td>10.6</td>
<td>17.1</td>
<td>3.1</td>
<td>1.4</td>
</tr>
<tr>
<td>DS5a</td>
<td>4.4</td>
<td>0.2</td>
<td>1.7</td>
<td>4.9</td>
<td>3.9</td>
<td>5.2</td>
<td>6.7</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>DS6a</td>
<td>3.7</td>
<td>0.8</td>
<td>1.7</td>
<td>5.6</td>
<td>4.7</td>
<td>12.5</td>
<td>13.4</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>DS7a</td>
<td>3</td>
<td>0.5</td>
<td>2.2</td>
<td>3.9</td>
<td>2</td>
<td>4.9</td>
<td>5.4</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>DS8a</td>
<td>2.4</td>
<td>3.7</td>
<td>1.1</td>
<td>4.5</td>
<td>3.3</td>
<td>7.7</td>
<td>8.3</td>
<td>2.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Coastal</td>
<td>9</td>
<td>7.3</td>
<td>4.5</td>
<td>14.9</td>
<td>12.1</td>
<td>22.6</td>
<td>27.7</td>
<td>4.9</td>
<td>2.7</td>
</tr>
<tr>
<td>DS1b</td>
<td>1.8</td>
<td>0.3</td>
<td>1.8</td>
<td>3</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>DS2b</td>
<td>2.4</td>
<td>0.4</td>
<td>2.4</td>
<td>3</td>
<td>0.6</td>
<td>0.2</td>
<td>0.6</td>
<td>2.9</td>
<td>3</td>
</tr>
<tr>
<td>DS3b</td>
<td>3</td>
<td>0.5</td>
<td>3</td>
<td>1</td>
<td>0.3</td>
<td>1.1</td>
<td></td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>DS4b</td>
<td>3.4</td>
<td>0.6</td>
<td>3.5</td>
<td>1.5</td>
<td>0.3</td>
<td>1.5</td>
<td></td>
<td>1.6</td>
<td>2.2</td>
</tr>
<tr>
<td>DS5b</td>
<td>3.5</td>
<td>2.9</td>
<td>4.5</td>
<td>1.1</td>
<td>0.3</td>
<td>1.2</td>
<td></td>
<td>0.8</td>
<td>1.4</td>
</tr>
<tr>
<td>DS6b</td>
<td>3.4</td>
<td>5.1</td>
<td>6.1</td>
<td>1.2</td>
<td>0.4</td>
<td>1.2</td>
<td></td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>DS7b</td>
<td>2.8</td>
<td>0.7</td>
<td>2.9</td>
<td>1.8</td>
<td>0.6</td>
<td>2</td>
<td></td>
<td>4.9</td>
<td>5.3</td>
</tr>
<tr>
<td>DS8b</td>
<td>2.4</td>
<td>0.7</td>
<td>2.5</td>
<td>0.9</td>
<td>0.4</td>
<td>1.1</td>
<td></td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>interior</td>
<td>7.8</td>
<td>6</td>
<td>9.8</td>
<td>8.1</td>
<td>1.7</td>
<td>8.3</td>
<td></td>
<td>15.4</td>
<td>17.5</td>
</tr>
<tr>
<td>GrIS</td>
<td>11.9</td>
<td>7.3</td>
<td>7.5</td>
<td>17.8</td>
<td>14.5</td>
<td>22.7</td>
<td>28.9</td>
<td>4.9</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Table A3: The GIA effects on mass balance in different GrIS regions based on 11 different GIA models. The unit is Gt yr\(^{-1}\). For the GIA models using Simpson’s ice history model, the column headers are in the form of “xpab”, where the x value refers to the lithosphere thickness (km), and a and b represent the viscosity of the upper and lower mantle, in \(10^{20}\) and \(10^{21}\) Pa s respectively.

<table>
<thead>
<tr>
<th>ICE model</th>
<th>ICE-5G</th>
<th>Wouter van der Wal</th>
<th>Simpso n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paulson-07</td>
<td>heatflow</td>
<td>seismi c</td>
</tr>
<tr>
<td>DS1a</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>DS2a</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DS3a</td>
<td>0</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>DS4a</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>DS5a</td>
<td>-3</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>DS6a</td>
<td>-2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>DS7a</td>
<td>-3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DS8a</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Ellesmere</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Baffin</td>
<td>12</td>
<td>-3</td>
<td>6</td>
</tr>
<tr>
<td>Iceland</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Svalbard</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
References


Barletta, V. R., Sørensen, L. S., and Forsberg, R.: Scatter of mass changes estimates at basin scale for Greenland and Antarctica, The Cryosphere, 7, 1411-1432, 2013.


