Analysis of the mass balance time series of glaciers in the Italian Alps

L. Carturan1,6, C. Baroni2,3,6, M. Brunetti4, A. Carton5,6, G. Dalla Fontana1,6, M. C. Salvatore2,6, T. Zanoner5,7, and G. Zuecco1

1 Dipartimento Territorio e Sistemi Agro-Forestali, University of Padova, Viale dell’Università 16, 35020, Legnaro, Padova, Italy
2 Dipartimento di Scienze della Terra, University of Pisa, Via S. Maria 53, 56126, Pisa, Italy
3 IGG-CNR, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
4 ISAC-CNR, Via Gobetti 101, 40129, Bologna, Italy
5 Dipartimento di Geoscienze, University of Padova, Via Gradennigo 6, 35131, Padova, Italy
6 Comitato Glaciologico Italiano, Corso Massimo d’Azeglio 42, 10125, Torino, Italy
7 CNR-IRPI, Strada delle Cacce 73, 10135, Torino, Italy

Received: 4 October 2015 – Accepted: 7 October 2015 – Published: 29 October 2015
Correspondence to: L. Carturan (luca.carturan@unipd.it)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

This work presents an analysis of the mass balance series of nine Italian glaciers, which were selected based on the length, continuity and reliability of observations. All glaciers experienced mass loss in the observation period, which is variable for the different glaciers and ranges between 10 and 47 years. The longest series display increasing mass loss rates, that were mainly due to increased ablation during longer and warmer ablation seasons. The mean annual mass balance (B_a) in the decade from 2004 to 2013 ranged from $−1788$ mm to $−763$ mm w.e. yr$^{-1}$. Low-altitude glaciers with low elevation ranges are more out of balance than the higher, larger and steeper glaciers, which maintain residual accumulation areas in their upper reaches. The response of glaciers is mainly controlled by the combination of October–May precipitation and June–September temperature, but rapid geometric adjustments and atmospheric changes lead to modifications in their response to climatic variations. In particular, a decreasing correlation of B_a with the June–September temperature and an increasing correlation with October–May precipitation are observed for some glaciers. In addition, the October–May temperature tends to become significantly correlated with B_a, possibly indicating a decrease in the fraction of solid precipitation, and/or increased ablation, during the accumulation season. Because most of the monitored glaciers have no more accumulation area, their observations series are at risk due to their impending extinction, thus requiring a soon replacement.

1 Introduction

The mass balance of glaciers is a key variable for monitoring strategies of the Earth climate system because it is the direct and undelayed response of glaciers to atmospheric conditions. Other reactions of glaciers to climatic changes, such as the fluctuations of the front, are more easy and immediate to measure but represent indirect, delayed and filtered signals (WGMS, 2008; Zemp et al., 2005).
The direct glaciological method (Østrem and Brugman, 1991) is the standardized method in worldwide glacier monitoring strategies. This method consists of in-situ measurements of the surface accumulation and ablation, taken at single points and then extrapolated and integrated to yield the surface mass balance over the entire glacier (Kaser et al., 2003; Cogley et al., 2011). The World Glacier Monitoring Service (WGMS) collects and publishes mass balance data of glaciers obtained by the glaciological method as part of global climate-related observation systems (Zemp et al., 2009; WGMS, 2012, 2013, and earlier issues).

The European Alps are one of the regions of the world with the highest density of glaciers that are subject to mass balance observations. 25 glaciers have ongoing and continuous mass balance series with at least 10 years of observations, and 11 of them are longer than 30 years (http://www.wgms.ch/metadatabrowser.html, last access: 27 September 2015). In the Italian Alps, nine glaciers have ongoing and continuous mass balance series longer than 10 years, and only one glacier (the Careser Glacier) has a series longer than 30 years.

The mass balance series of the glaciers in the Italian Alps have not yet been reviewed. The Italian glaciers may have a peculiar behaviour compared to the glaciers from other regions of the European Alps, because of the differences in glacier characteristics, climatic features and trends of meteorological variables (Brunetti et al., 2006, 2009; Auer et al., 2007). Differences may occur in the response of the glaciers in different sub-regions of the Italian Alps or with different characteristics, which have not been recognized. It is also interesting to highlight possible non-linearities in the response of Italian glaciers to atmospheric changes.

Therefore, this work aims to (i) analyse and compare the direct mass balance series of the glaciers in the Italian Alps, (ii) understand the behaviour of the measured glaciers in relation to the observed climatic trends, and (iii) highlight possible future requirements for the mass balance monitoring strategy in the Italian Alps.
2 Methods

2.1 Available mass balance series

In this work, we analyse the glaciers with at least 10 years of continuous and ongoing mass balance measurements, which were obtained using the direct glaciological methods and published in peer reviewed journals or in the WGMS publications (CGI, 1914–1977, 1978–2011; Baroni et al., 2012, 2013, 2014; WGMS, 2012, 2013, and earlier issues). “Continuous” indicates the series with data gaps < 10 %, and “ongoing” indicates that the mass balance observations have been performed in the last two years (i.e., the 2012 and 2013 hydrological years). These criteria ensure the comparability of the series, a sufficient length in the temporal analyses and reliability of the measurements and calculations.

Nine monitored glaciers have these characteristics in the Italian Alps and are clustered in three geographic areas (Fig. 1). The two monitored glaciers in the Gran Paradiso Group (Western Alps), i.e., Grand Etrét (since 2002) and Ciardoney (since 1992), are rather small (area < 1 km2) and have low mean elevations and low elevation ranges (Table 1). Snowfall is the prevailing feeding source, but windborne snow and avalanching also contribute to snow accumulation.

The longest series of mass balance measurements in the Italian Alps has been collected on the Careser Glacier, in the Ortles-Cevedale (Eastern Alps, Fig. 1) from 1967. Currently, this glacier is undergoing rapid shrinking and fragmentation in smaller units. It is characterized by a flat surface, prevailing southern exposure, quite low mean elevation and feeding by snowfall. Its area decreased from 5 km2 in 1967 to 1.6 km2 in 2012 (Carturan et al., 2013a). In the 1980s, observations started in two other glaciers of the Ortles-Cevedale: Fontana Bianca and Sforzellina. These two small mountain glaciers (area < 0.5 km2) have different characteristics: Fontana Bianca is rather steep with negligible debris cover and mainly fed by snowfall, whereas Sforzellina is flatter, debris-covered in its lower part and fed by avalanches in its upper part. In the 2000s, mass balance observations began in the Lunga Glacier and in the southern branch of
La Mare Glacier, which are larger valley glaciers (1.9 and 2.2 km², respectively) that reach higher elevations (3378 and 3518 m, respectively) and mainly fed by snowfall.

In Val Ridanna (Breonie Occidentali Group, Eastern Alps, Fig. 1), the measurements began in 1996 in the Pendente Glacier and were extended to the Malavalle Glacier in 2002. The first glacier is a 0.9 km² wide mountain glacier, characterized by a flat surface, low mean elevation, southern exposure and significant accumulation from windborne snow. The second glacier is a much larger (6.9 km²) valley glacier with higher mean and maximum elevation and mainly fed by snowfall.

2.2 Mass balance measurements and calculations

Point measurements of the annual mass balance in the ablation area consist of repeat readings of ablation stakes, which are made of aluminium, wood or plastic and drilled into the ice/firn using hand drills or steam drills. In the accumulation area, the depth of the snow at the end of the ablation season is measured using hand probes, and its density is determined in snowpits. Snow depth soundings and density measurements in the snowpits or by hand coring devices are also used for winter mass balance measurements, which are performed on all glaciers except Sforzellina. The summer mass balance is derived by subtracting the winter mass balance from the annual mass balance. The density of measuring points varies among different glaciers in relation to their extent, accessibility and complexity of the mass balance distribution. The ablation stake density ranges from 4 (Malavalle Glacier) to 45 points km⁻² (Sforzellina Glacier). The density of snow depth soundings for the winter mass balance determination ranges from 15 (Malavalle Glacier) to 142 points km⁻² (Fontana Bianca Glacier).

Point measurements are interpolated and extrapolated to the entire area of the glaciers using different procedures. In the grand Etrét and Ciardoney glaciers, each ablation stake is assumed representative of a specific part of the glacier, where the mass balance distribution is assumed homogeneous. Then, a weighted mean is calculated, using the area of the homogeneous parts into which the glacier is
subdivided as weights (http://www.pngp.it/, last access: 27 September 2015; http://www.nimbus.it/, last access: 27 September 2015). In Malavalle and Pendente glaciers, the area is divided into “sub-catchments”, and for each sub-catchment, a linear regression of point balances vs. altitude is calculated and used for the spatialization (http://www.provinz.bz.it/wetter/glacierreport.asp, last access: 27 September 2015). In Careser Glacier, the even distribution of the mass balance and good coverage of measurement points enable the use of automatic interpolation algorithms (Spatial Analyst Tools) in the ESRI-ArcGIS software. Manual drawing of balance isolines is used for the remaining Sforzellina, Fontana Bianca, La Mare and Lunga glaciers (Catasta and Smiraglia, 1993; Cannone et al., 2008; http://www.provinz.bz.it/wetter/glacierreport.asp; Carturan et al., 2015). The measurements are performed close to the time of maximum and minimum mass balance during the year, when the glacier and atmospheric conditions are favourable for field surveys. The “floating-date” time measurement system is used for all glaciers (Cogley et al., 2011). Typical errors reported in the literature for whole-glacier mass balance estimates obtained with these methods are of about ±200 mm w.e. yr⁻¹ (Lliboutry, 1974; Braithwaite and Olesen, 1989; Cogley and Adams, 1998; Cogley, 2009).

2.3 Meteorological series

The climatic variables used in this work consist of synthetic records of the monthly mean temperature and total monthly precipitation, which are obtained for the centre of the three main geographic areas described in Sect. 2.1, using the procedure reported in Brunetti et al. (2012). Starting from sparse meteorological data recorded at meteorological stations, the synthetic meteorological series are generated using the anomaly method (New et al., 2000; Mitchell and Jones, 2005). This method is based on the assumption that the spatio-temporal structure of the signal of a meteorological variable over a given area can be described by the superimposition of two fields: the climatological normals over a given reference period (i.e., the climatologies) and the departures from them (i.e., the anomalies). The climatologies are linked to the
geographic features of the territory and characterized by remarkable spatial gradients; the departures are linked to the climate variability and change, and they are generally characterized by higher spatial coherence.

Under this assumption, the climatologies and anomalies can be reconstructed in completely independent manners and based on different data sets. For climatologies, the priority is the high spatial resolution, and a short time span (few decades) is sufficient. A lower spatial resolution is sufficient for the anomalies, but more importance is given to the data quality and availability of long records. Thus, all series that were used for the anomaly component were subjected to homogenization.

The interpolation methods are different for the two components. The climatologies, which are characterized by high spatial gradients, were reconstructed using the procedure in Brunetti et al. (2014) for the mean temperature, exploiting the relationship between the meteorological variable and the physical characteristics of the terrain. The anomalies, which are characterized by higher spatial coherence, were reconstructed using weighted averages as described in Brunetti et al. (2006). The weights are horizontal and vertical distance weighting functions, with the addition of an angular weight that accounts for the anisotropy in the distribution of stations around the sites. Finally, the two fields were superimposed to obtain the temporal series in absolute values for each site.

2.4 Analyses of the mass balance and meteorological series

The time series of annual mass balance (B_a), winter mass balance (B_w), summer mass balance (B_s) and Accumulation Area Ratio (AAR, i.e., the ratio of the area of the accumulation zone to the area of the glacier) were analysed and compared to highlight the possible trends, break points, common behaviour and peculiarities of single glaciers and/or single years. To highlight the systematic differences among the glaciers, the mean values of B_a, B_w, B_s and AAR were calculated in the common period of observation from 2004 to 2013. The decadal means of B_a for the Italian glaciers were compared to the decadal means for a sample of nine representative glaciers.
of the European Alps (Zemp et al., 2005). The correlations among the B_a series of different glaciers and among B_a of single glaciers with the respective series of B_w and B_s were subsequently computed, to identify possible groups of glaciers with similar behaviours and to understand the relative importance of the seasonal components of mass balance.

Linear trends and moving averages were calculated for the time series of air temperature and precipitation to highlight the climatic drivers of the observed glacier changes. In particular, we focused on the precipitation of the accumulation season, from October to May (October–May), and on the air temperature of the ablation season, from June to September (June–September) (Pelto, 2008; Carturan et al., 2013b), computing their correlation with B_a and performing multiple linear regression analyses. For the four glaciers with the longest mass balance series (Careser, Fontana Bianca, Sforzellina and Ciardoney), we performed a moving correlation analysis of B_a vs. the seasonal and annual temperature and precipitation, to recognize possible changes and/or trends in their response and sensitivity to climatic fluctuations, e.g., ascribable to geometric adjustments.

3 Results and discussion

3.1 Analysis of mass balance series

The longer available series for the glaciers in the Italian Alps clearly show a trend towards more negative B_a in the observation period (Fig. 2). In particular, the series of Careser Glacier shows three phases: (i) the period from 1967 to 1980 with near equilibrium conditions (mean $B_a = -132$ mm w.e. yr$^{-1}$, SD = 540 mm w.e.), (ii) the period from 1981 to 2002 with imbalanced conditions (mean $B_a = -1192$ mm w.e. yr$^{-1}$, SD = 517 mm w.e.); and (iii) the period after 2002 with stronger imbalance (mean $B_a = -1926$ mm w.e. yr$^{-1}$, SD = 725 mm w.e.). A sudden transition in 1980–1981 is also clearly visible in the series of AAR, which documents the nearly complete
disappearance of the accumulation area of this glacier, which is likely responsible for the step change in its mass balance series during that period.

The transition of 2002–2003 is also observable for the Fontana Bianca, Sforzellina and Pendente glaciers, whose measurements started in the 1980s and 1990s. Their mean B_a values changed from -599, -868 and -703 mm w.e. yr$^{-1}$, before 2002, to -1257, -1471 and -1308 mm w.e. yr$^{-1}$ after 2002, respectively. This transition is less obvious for the Ciardoney Glacier, which experienced a notably negative mass balance already in 1998 and 1999. The B_w and B_s series have some gaps but suggest that the increased mass loss rates were mainly ascribable to increased ablation (and associated positive feedbacks) instead of decreased snow accumulation. These results are consistent with previous works, which indicate that the mass changes of the glaciers in the Alps, at the annual and decadal scale, are mainly driven by the summer balance (e.g., Schoner et al., 2000; Vincent et al., 2004; Zemp et al., 2008; Huss et al., 2015).

The AAR series show that the accumulation area almost vanished from all glaciers in the 2000s except the years 2001, 2010 and 2013, when several glaciers were close to balanced-budget conditions mainly as a result of the increased B_w. In these years, the highest increase in AAR occurred in the Fontana Bianca Glacier, which is steep and exposed to the east. On the contrary, the AAR did not significantly increase in the neighbouring Careser Glacier, which is flatter and mainly exposed to the south (Table 1). This behaviour is uncommon for flat glaciers because they should be more sensitive to variations of the Equilibrium Line Altitude (ELA) than the steeper glaciers (Benn and Evans, 2010), and reveals that the Careser Glacier is almost completely below the current ELA, also in the years of ELA minima. La Mare and Malavalle glaciers, which are larger and cover a wider elevation range (Table 1), show more persistent accumulation areas, although their size is too small to ensure balanced-budget conditions.

The B_a and B_s values of different glaciers tend to diverge in years with largely negative mass balance and converge in years closer to equilibrium (1993, 2001, 2010
Reinforcing processes and feedbacks likely amplify the differences among the glaciers in imbalanced years, particularly the decreased albedo caused by the early disappearance of snow from low-lying, flat and less topographic-shielded glaciers. B_w also shows the alternation of years with small/large variability among the glaciers, but this behaviour cannot be clearly related to the magnitude of the snow accumulation, as observed in the two high-accumulation years 2009 (high variability) and 2013 (low variability). In this case, the spatial variability of the precipitation during the accumulation season, which is larger than the spatial variability of air temperature in the ablation season, determines the interannual variability of B_w for single glaciers, which is further controlled by snow redistribution processes. Snow redistribution appears more effective for the Pendente and Grand Etrèt glaciers, leading to over-accumulation in snow-rich winters (e.g., in 2009) and larger interannual variability of B_w.

In the period from 2004 to 2013, significantly higher B_w is observed for these two glaciers, compared with the other glaciers in the same geographic area, likely due to windborne snow during and/or following precipitation events (Table 2). The high accumulation rate explains the persistence of these two ice bodies at such low altitude (Table 1). In the same period, the Careser Glacier had the lowest average B_a and AAR, whereas the Malavalle and La Mare glaciers had the highest average B_a, B_s and AAR, retaining accumulation areas in their upper parts. However, the mean AARs were remarkably low for all analysed glaciers, and far from balanced-budget conditions ($AAR_0 = 0.55–0.58$, Dyurgerov et al., 2009; Mernild et al., 2013). Overall, low-altitude and flat glaciers with low elevation ranges are more out of balance than the steeper glaciers at higher altitude with higher elevation ranges, as acknowledged in various other studies (e.g., Furbish and Andrews, 1984; Benn and Evans, 2010; Carturan et al., 2013b; Fischer et al., 2015).

The response of Italian glaciers to the climatic conditions of the last decades is similar to that of nine representative glaciers of the entire European Alps (Zemp et al., 2005; Fig. 3), although single glaciers display different mass loss rates (Table 2).
The Italian glaciers display ∼ 200–250 mm w.e. yr⁻¹ more negative B_a until 2002 and ∼ 200 mm w.e. yr⁻¹ less negative B_a since then. Therefore, the mean B_a values for the Italian and “European” glaciers is fairly similar, although different subsets of Italian glaciers are useable for four different sub-periods. Similar results were obtained by Huss et al. (2015), who compared the decadal mean B_a of glaciers from France, Switzerland, Austria and Italy. In the last decade, the inclusion of La Mare and Malavalle glaciers in the Italian subset and the concurrent sharp decrease of B_a for the Sarennes, St. Sorlin and Gries glaciers explain the different behaviours of the two groups of glaciers. However, the smaller Italian glaciers (average area = 1.79 km²) may have a shorter response time to climatic changes, adjusting their geometry faster than the larger glaciers (average area = 3.63 km²) which are representative of the European Alps (Hoelzle et al., 2003; Abermann et al., 2009). The rapid shrinking and fragmentation of Careser Glacier is a good example: in the last decade, its area has halved, and it completely lost the parts subject to higher ablation (Carturan et al., 2013a). Changes in the general atmospheric circulation and spatial distribution of precipitation could also have played a role and will be discussed in Sect. 3.2.

There is a generally high correlation among the B_a values of the analysed glaciers (Table 3). The series of Careser, Fontana Bianca and La Mare glaciers show a highly significant correlation with most other glaciers, even if they have different characteristics or are far away. On the contrary, the Lunga Glacier shows a lower correlation and lower statistical significance with the glaciers of the same mountain group. However, it has the shortest series, and most importantly, it does not include the highly negative B_a of 2003, which certainly increases the correlation among other glaciers. There are notably high correlations in the Ortles Cevedale between Careser and La Mare and between Fontana Bianca and La Mare glaciers. A similarly high correlation is observed between Pendente and Malavalle glaciers in Val Ridanna, whereas there is a much lower correlation between the two glaciers of the Gran Paradiso Group, which suggests that differences in local topo-climatic factors can be decisive on such small ice bodies.
3.2 Climatic controls

In the period from 1961 to 2013, there are highly significant warming trends for the June–September air temperature (Fig. 4a–c); they are highest in the Gran Paradiso Group (0.40°C decade$^{-1}$) and lowest in Val Ridanna (0.35°C decade$^{-1}$). The three phases in the longer B_a and B_s series of glaciers (Fig. 2) can be recognized as periods with stationary June–September temperature, separated by switches in the early 1980s and after the peak of 2003. The warming trends are lower in the accumulation season and range from 0.25 to 0.27°C decade$^{-1}$ (Fig. 4d–f), but thermal inversions at the valley weather stations could have partially masked the warming at the altitude of the glaciers in this season. The transition towards higher October–May temperature occurred in the late 1980s, after a minimum in the first half of the same decade. A distinct warm peak in October–May temperature occurred in 2007.

The precipitation does not show any significant trend in the accumulation season (Fig. 5d–f). The moving averages display oscillations of 10–20% above and below the 1961–1990 mean, which lasted approximately 10–15 years and were higher in the Gran Paradiso Group than in the Ortles-Cevedale and Val Ridanna. Periods with below-average precipitation are recognized in the 1960s, first half of 1970s, and 1990s, whereas periods with above-average precipitation occurred in the second half of 1970s.
of 1970s and the first half of 1980s. The last 10–15 years were characterized by precipitation close to the mean, with important maxima in 2001, 2009 and 2013, and minima in 2007 and 2012. Linear trends of summer precipitation are positive but not statistically significant. The interannual variability of the June–September precipitation is remarkably higher in the Gran Paradiso Group (Fig. 5a–c).

Large scale circulation patterns, such as the North Atlantic Oscillation (NAO) and the Northern Hemisphere blocking frequency, are connected with the temporal and spatial variability of winter precipitation in the Alps (Quadrelli et al., 2001). Several studies highlighted a contrasting behaviour of precipitation anomalies in the October–May period between the northern and southern Alps, i.e. opposite correlation with indexed large scale circulation patterns (e.g., Quadrelli et al., 2001; Schmidli et al., 2002, Brunetti et al., 2006) and opposite long-term trends in the seasonal precipitation totals (e.g., Brunetti et al., 2006, 2009; Auer et al., 2007). This characteristic, and the tendency towards a decreasing NAO index in the last two decades (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/JFM_season_nao_index.shtml, last access: 4 October 2015), leading to increased winter precipitation in the southern side of the Alps, may provide an additional explanation for the different behaviour of “European” and “Italian” glaciers shown in Fig. 3. Opposite effects of the NAO on the winter precipitation and glacier mass balance in the northern and southern parts of the Eastern Alps were also reported, for example, by Marzeion and Nesje (2012).

The examination of meteorological series confirms that increased ablation and the related feedbacks are the main causes of the increased imbalance of the analysed Italian glaciers, as observed in Sect. 3.1. This result is further corroborated by the higher correlation of \(B_a \) with the June–September temperature than with the October–May precipitation, at least for the glaciers with longer observation series (Careser, Fontana Bianca, Sforzellina and Ciardoney, Table 5). \(B_a \) of glaciers with shorter observation series is not significantly correlated with the June–September temperature; instead, two of them (La Mare and Lunga) show a correlation with the October–
May precipitation. Combining the October–May precipitation and June–September temperature in a multiple linear regression model leads to highly significant coefficients for both variables, even when the single seasonal components are not correlated with B_a (e.g., for the Pendente and La Mare glaciers). Approximately two-thirds of the B_a variance can be explained by the multiple linear regression. The poorest results were obtained for the two glaciers in Val Ridanna (Pendente and Malavalle) and the Grand Etrèt Glacier. As the first two glaciers are close to the main Alpine divide, they likely benefit from the high orographic uplift that locally enhances precipitation (Schwarb, 2000), but which cannot be accounted for by the multiple regression model due to the lack of weather stations in that area. In addition, the multiple regression model does not account for accumulation by windborne snow on the Pendente and Grand Etrèt glaciers.

The Careser, Fontana Bianca and Pendente glaciers display significant negative correlations between their B_a and the October–May temperature. Normally, in this period, most precipitation falls as snow, and the glaciers have negligible ablation and low temperature sensitivity (Oerlemans and Reichert, 2000). However, increasing temperature starts to lead to significant ablation in this period and to reduce the fraction of solid precipitation as clearly detectable in the ablation season (Carturan et al., 2013b). An emblematic example is the warm accumulation season of 2006–2007, when the liquid precipitation reached 3000–3100 m.a.s.l. (24 October 2006), and ice ablation exceeded 50 cm at 3000 m.a.s.l. on the Careser and La Mare glaciers.

The correlation between B_a of Careser Glacier and the October–May temperature starts to become significant in the late 1980s, as shown in the moving correlation analyses (30 year time window in Fig. 6). In the first 20 years, the correlation was absent or not statistically significant. These results are consistent with the discussed effects of increasing temperature on the ablation and partitioning between liquid and solid precipitation (Beniston et al., 2003). Reducing the window size from 30 to 15 years leads to a noisier signal and in this case the correlation between B_a and October–May temperature does not reach the 95% significance thresholds. However, it is interesting
to remark the reversal of the correlation sign from positive in the first years to negative in the last years.

The four glaciers in Fig. 6 (Careser, Fontana Bianca, Sforzellina and Ciardoney) share a common trend towards (i) a non-significant moving correlation between B_a and the June–September temperature and (ii) a significant moving correlation between B_a and October–May precipitation. This behaviour is probably related to the snow-rich accumulation seasons of 2001, 2009 and 2013, and to the fact that the ablation season is already so warm that (i) summer snow falls mostly above the highest reaches of the glaciers, which reduces the interannual variability of summer melt, and (ii) conditions close to balanced-budget only occur after snow-rich accumulation seasons.

Rapid geometric changes may also lead to a non-linear response of B_a to atmospheric changes, at least for some glaciers. For example, the multiple regression residuals of the Careser Glacier, which were mostly positive in the 1980s, 1990s and 2000s, became predominantly negative after 2008 (Fig. 7). This change may suggest that the rapid modifications occurred in the latest years could have induced a negative feedback, reducing the mass loss rate of the glacier, whose current surface and shape are strongly different from the recent past (inset in Fig. 7). Because the multiple regression model does not use the October–May temperature as an explanatory variable, it cannot account for the effects of the warm accumulation season of 2006–2007, which led to a very low B_w, early disappearance of winter snow and positive albedo feedback. Therefore, the year 2007 results in highly positive regression residuals.

3.3 Future requirements

A common characteristic for all glaciers analysed is their very low mean AAR in the last decade (Table 2). Accumulation areas were almost inexistent in most glaciers, indicating that they will soon disappear, even without additional warming. Some glaciers are displaying morphological changes that indicate their impending extinction, such as rapid disintegration (e.g., Careser Glacier, Fig. 7) and surface lowering in the
upper accumulation area (e.g., Fontana Bianca Glacier). The AARs of approximately 0.25 indicate that accumulation areas still exist in the larger and higher-reaching La Mare and Malavalle glaciers. However, given that balanced-budget conditions require AAR close to 0.55, large mass loss and areal reduction are also expected for these two glaciers to reach equilibrium with the climatic conditions of the last ten years.

The forthcoming vanishing of the monitored glaciers put the continuation of their mass balance observations at risk. Recently-started monitoring programs in larger and higher-reaching glaciers, such as Malavalle and La Mare, will ensure continued observations in Val Ridanna and the Ortles-Cevedale. In line with the recommendations from the WGMS (Zemp et al., 2009), similar observation programs should start in other large and high-reaching glaciers of the Italian Alps, e.g., in the Gran Paradiso group (to substitute Ciardoney and Grand Etrét) and in other mountain groups. Both the initiation of observations over new glaciers and the replacement of vanishing glaciers will require an assessment of the spatial representativeness of single glaciers through the comparison of the current mass loss rates over wide geographic areas (Haeberli et al., 2013). This assessments can be obtained using modern techniques such as the multi-temporal differencing of digital elevation models, which enable the comparison of mass loss rates in the last years/decades, by means of the geodetic method, over entire regions or mountain ranges (e.g., Paul and Haeberli, 2008; Abermann et al., 2011; Carturan et al., 2013b; Berthier et al., 2014; Fischer et al., 2015).

4 Conclusions

In this work, we have analysed the time series of the glaciers with mass balance observations in the Italian Alps. Based on the results of the analyses, the following conclusions can be drawn:

– All examined glaciers are experiencing imbalanced conditions, and the longer series show sustained negative trends of B_a.

5864
The observed behaviour was mainly caused by increased ablation, led by warmer temperature and related feedbacks. The total precipitation does not show any significant trend, but the fraction of solid precipitation decreased as a consequence of the warmer temperature.

The B_a of the analysed glaciers is mainly correlated to B_s, except for two glaciers where windborne snow enhances the importance of B_w. For most glaciers, approximately two thirds of the B_a variance can be explained by multiple linear regression, using the October–May precipitation and June–September temperature as independent variables.

The monitored Italian glaciers have comparable mass loss rates to a sample of representative glaciers of the entire European Alps. However, the moving correlation analyses and time series of residuals from multiple linear regressions suggest that the smaller (and thinner) Italian glaciers may be reacting faster to atmospheric changes.

Most monitored glaciers have no more accumulation area and are at risk of extinction, even without additional warming. Therefore, they will soon require a replacement with larger and higher glaciers that retain accumulation areas.

Regional assessments of the mass loss rates using the geodetic method are required to identify possible replacing glaciers, evaluate their spatial representativeness and enable the transitions from replaced to replacing glaciers, as suggested by Haeberli et al. (2013).

Author contributions. M. Brunetti processed the meteorological data and prepared the synthetic meteorological series used in this work. Thomas Zanoner compiled the database of the mass balance data and geometric characteristics of the glaciers. L. Carturan and Giulia Zuecco performed the temporal and statistical analyses of the mass balance series. L. Carturan prepared the manuscript with contributions from all co-authors.
Acknowledgements. This study was funded by the Italian MIUR Project (PRIN 2010–11): “Response of morphoclimatic system dynamics to global changes and related geomorphological hazards” (local and national coordinators G. Dalla Fontana and C. Baroni). The authors acknowledge the regional environmental agencies of Piemonte, Val d’Aosta, Lombardia, Autonomous Provinces of Trento and Bolzano, which provided the meteorological and topographic data used in this study. We would also like to thank all investigators and contributing institutions for the collection and free exchange of the glacier mass balance series.

References

Table 1. Physical characteristics of the Italian glaciers with the mass balance series analysed in this study (year 2006, NextData – DATAGRALP project: http://www.nextdataproject.it/?q=en/content/special-project-datagralp, last access: 27 September 2015).

<table>
<thead>
<tr>
<th>Glacier (Geographic area)</th>
<th>Area (km²)</th>
<th>Minimum elevation (m.a.s.l.)</th>
<th>Maximum elevation (m.a.s.l.)</th>
<th>Median elevation (m.a.s.l.)</th>
<th>Prevailing aspect</th>
<th>Average slope (°)</th>
<th>First survey year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand Etrèt Gran Paradiso</td>
<td>0.47</td>
<td>2667</td>
<td>3190</td>
<td>2894</td>
<td>N</td>
<td>23</td>
<td>2002</td>
</tr>
<tr>
<td>Ciaradoney Gran Paradiso</td>
<td>0.59</td>
<td>2855</td>
<td>3170</td>
<td>3039</td>
<td>E-NE</td>
<td>18</td>
<td>1992</td>
</tr>
<tr>
<td>Fontana Bianca Ortes-Cevedale</td>
<td>0.48</td>
<td>2889</td>
<td>3342</td>
<td>3166</td>
<td>E</td>
<td>23</td>
<td>1984</td>
</tr>
<tr>
<td>Sforzellina Ortes-Cevedale</td>
<td>0.29</td>
<td>2790</td>
<td>3046</td>
<td>2868</td>
<td>NW</td>
<td>16</td>
<td>1978</td>
</tr>
<tr>
<td>Lunga Ortes-Cevedale</td>
<td>1.86</td>
<td>2678</td>
<td>3378</td>
<td>3128</td>
<td>NE</td>
<td>19</td>
<td>2004</td>
</tr>
<tr>
<td>Careser Ortes-Cevedale</td>
<td>2.39</td>
<td>2868</td>
<td>3279</td>
<td>3069</td>
<td>S</td>
<td>11</td>
<td>1967</td>
</tr>
<tr>
<td>La Mare (southern branch) Ortes-Cevedale</td>
<td>2.16</td>
<td>2652</td>
<td>3518</td>
<td>3215</td>
<td>NE</td>
<td>21</td>
<td>2003</td>
</tr>
<tr>
<td>Pendente Val Ridanna</td>
<td>0.95</td>
<td>2621</td>
<td>3064</td>
<td>2781</td>
<td>S</td>
<td>15</td>
<td>1996</td>
</tr>
<tr>
<td>Malavalle Val Ridanna</td>
<td>6.92</td>
<td>2512</td>
<td>3441</td>
<td>2971</td>
<td>SE</td>
<td>14</td>
<td>2002</td>
</tr>
</tbody>
</table>
Table 2. Mean values (and SD in brackets) of B_w, B_s, B_a and AAR for nine Italian glaciers in the period from 2004 to 2013 (Car = Careser, FB = Fontana Bianca, Pen = Pendente, Cia = Ciardoney, Sfo = Sforzellina, GE = Grand Etrét, Lun = Lunga, Mar = La Mare, Mal = Malavalle). Values expressed in mmw.e. except AAR that is in percent.

<table>
<thead>
<tr>
<th></th>
<th>Car</th>
<th>Mar</th>
<th>FB</th>
<th>Sfo</th>
<th>Lun</th>
<th>Pen</th>
<th>Mal</th>
<th>Cia</th>
<th>GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_w (9 years)</td>
<td>927</td>
<td>989</td>
<td>1085</td>
<td>–</td>
<td>991</td>
<td>1537</td>
<td>1194</td>
<td>1052</td>
<td>1472</td>
</tr>
<tr>
<td></td>
<td>(330)</td>
<td>(301)</td>
<td>(338)</td>
<td></td>
<td>(222)</td>
<td>(425)</td>
<td>(256)</td>
<td>(421)</td>
<td>(578)</td>
</tr>
<tr>
<td>B_s (9 years)</td>
<td>–2740</td>
<td>–1758</td>
<td>–2183</td>
<td>–</td>
<td>–2151</td>
<td>–2857</td>
<td>–2087</td>
<td>–2510</td>
<td>–2396</td>
</tr>
<tr>
<td></td>
<td>(368)</td>
<td>(303)</td>
<td>(457)</td>
<td></td>
<td>(368)</td>
<td>(525)</td>
<td>(386)</td>
<td>(378)</td>
<td>(321)</td>
</tr>
<tr>
<td></td>
<td>(590)</td>
<td>(395)</td>
<td>(642)</td>
<td>(505)</td>
<td>(466)</td>
<td>(692)</td>
<td>(484)</td>
<td>(646)</td>
<td>(648)</td>
</tr>
<tr>
<td>AAR (10 years)</td>
<td>1</td>
<td>25</td>
<td>11</td>
<td>–</td>
<td>12</td>
<td>4</td>
<td>23</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>(14)</td>
<td>(22)</td>
<td></td>
<td>(16)</td>
<td>(8)</td>
<td>(17)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Correlation matrix of B_a for nine Italian glaciers.

<table>
<thead>
<tr>
<th></th>
<th>Car</th>
<th>FB</th>
<th>Pen</th>
<th>Cia</th>
<th>Sfo</th>
<th>GE</th>
<th>Lun</th>
<th>Mar</th>
<th>Mal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB</td>
<td>0.82b</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pen</td>
<td>0.85b</td>
<td>0.76b</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cia</td>
<td>0.87b</td>
<td>0.86b</td>
<td>0.55a</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfo</td>
<td>0.82b</td>
<td>0.75b</td>
<td>0.65b</td>
<td>0.81b</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>0.74b</td>
<td>0.77b</td>
<td>0.66a</td>
<td>0.62a</td>
<td>0.69a</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lun</td>
<td>0.70a</td>
<td>0.73a</td>
<td>0.60</td>
<td>0.48</td>
<td>0.49</td>
<td>0.77b</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>0.90b</td>
<td>0.96b</td>
<td>0.70a</td>
<td>0.90b</td>
<td>0.82b</td>
<td>0.80b</td>
<td>0.71a</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Mal</td>
<td>0.87b</td>
<td>0.84b</td>
<td>0.97b</td>
<td>0.61a</td>
<td>0.65a</td>
<td>0.68a</td>
<td>0.61</td>
<td>0.80b</td>
<td>1.00</td>
</tr>
</tbody>
</table>

a and b indicate Spearman correlation significant at the 0.05 and 0.01 level, respectively.
Table 4. Correlation coefficients of B_a vs. B_w and B_s.

<table>
<thead>
<tr>
<th></th>
<th>No of years</th>
<th>B_w</th>
<th>B_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>40</td>
<td>0.46<sup>b</sup></td>
<td>0.94<sup>b</sup></td>
</tr>
<tr>
<td>FB</td>
<td>22</td>
<td>0.24</td>
<td>0.84<sup>b</sup></td>
</tr>
<tr>
<td>Pen</td>
<td>12</td>
<td>0.84<sup>b</sup></td>
<td>0.67<sup>a</sup></td>
</tr>
<tr>
<td>Cia</td>
<td>22</td>
<td>0.51<sup>a</sup></td>
<td>0.76<sup>b</sup></td>
</tr>
<tr>
<td>GE</td>
<td>12</td>
<td>0.84<sup>b</sup></td>
<td>0.66<sup>a</sup></td>
</tr>
<tr>
<td>Lun</td>
<td>10</td>
<td>0.64<sup>a</sup></td>
<td>0.69<sup>a</sup></td>
</tr>
<tr>
<td>Mar</td>
<td>10</td>
<td>0.66<sup>a</sup></td>
<td>0.64<sup>a</sup></td>
</tr>
<tr>
<td>Mal</td>
<td>9</td>
<td>0.48</td>
<td>0.85<sup>b</sup></td>
</tr>
</tbody>
</table>

^a and ^b indicate Spearman correlation significant at the 0.05 and 0.01 level, respectively.
Table 5. Spearman correlation coefficients and multiple regression results of B_a vs. seasonal mean temperature and precipitation.

<table>
<thead>
<tr>
<th></th>
<th>Air temperature – Correlation coefficients</th>
<th>Precipitation – Correlation coefficients</th>
<th>Multiple linear regression – Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Car</td>
<td>FB</td>
<td>Slo</td>
</tr>
<tr>
<td>No of years</td>
<td>47</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Jun–Sep</td>
<td>−0.77</td>
<td>−0.49</td>
<td>−0.52</td>
</tr>
<tr>
<td>Oct–May</td>
<td>−0.37</td>
<td>−0.42</td>
<td>−0.10</td>
</tr>
<tr>
<td>Year</td>
<td>−0.68</td>
<td>−0.49</td>
<td>−0.30</td>
</tr>
</tbody>
</table>

| No of years | 47 | 27 | 27 | 22 | 18 | 12 | 12 | 11 | 10 | 47 | 0.11 | 0.36 | 0.39 | 0.09 | 0.20 | 0.00 | 0.02 | −0.04 | 0.26 | −0.05 | 0.28 | 0.40 | 0.32 | 0.47 | 0.37 | 0.57 | 0.43 | 0.67 | 0.71 | 0.11 | 0.36 | 0.39 | 0.09 | 0.20 | 0.00 | 0.02 | −0.04 | 0.26 | −0.05 | 0.011 | 0.36 | 0.39 | 0.09 | 0.20 | 0.00 | 0.02 | −0.04 | 0.26 | −0.05 |

| % of explained variance | 75.6 | 68.7 | 72.1 | 73.7 | 51.5 | 56.8 | 56.0 | 78.4 | 64.5 |

a, b and c indicate 0.05, 0.01 and 0.001 significance levels.
Figure 1. Geographic setting of the glaciers with mass balance measurements analysed in this work (Microsoft® Bing® Maps).
Figure 2. Time series of B_w, B_s, B_a and AAR for the nine Italian glaciers analysed.
Figure 3. Cumulative mass balance for the nine Italian glaciers and for a set of nine other glaciers representative of the European Alps. Dotted and dashed lines indicate the average B_a for the two groups of glaciers in the periods from 1967 to 1983, 1984 to 1993, 1994 to 2003 and 2004 to 2013.
Figure 4. Left column: mean ablation season (June–September) air temperature anomalies in (a) Gran Paradiso, (b) Ortles-Cevedale, and (c) Val Ridanna. Right column: mean accumulation season (October–May) air temperature anomalies in (d) Gran Paradiso, (e) Ortles-Cevedale, and (f) Val Ridanna. Reference period: 1961–1990. All linear trends are significant at the 0.001 level.
Figure 5. Left column: ablation season (June–September) total precipitation anomalies in (a) Gran Paradiso, (b) Ortles-Cevedale, and (c) Val Ridanna. Right column: accumulation season (October–May) total precipitation anomalies in (d) Gran Paradiso, (e) Ortles-Cevedale, and (f) Val Ridanna. Reference period: 1961–1990. None of the linear trends is significant at the 0.05 level.
Figure 6. Bootstrapped moving correlation coefficient between annual mass balance and seasonal values of air temperature and precipitation. Shaded straight lines indicate significance at 95% level.
Figure 7. Plot of residuals of the multiple linear regression of B_a vs. October–May precipitation and June–September temperature on the Careser Glacier. Multiple regression coefficients are reported in Table 5. The inset shows the extent of the glacier in three different years.