General Comments

This paper presents results for a time-dependent model simulation of Jakobshavn. The best model out of 50 runs is presented and the results are claimed to match the observations reasonably well. In fact, the model does rather a poor job of matching the velocity data. Examination of velocity fields in Figure 2 indicates a wide (~10 km) region of fast flow, which falls off with distance inland (within about 5 km). Comparing 2010/2012 observations in Figure 6 shows that the region of fast flow extends much deeper into the ice sheet. Furthermore, maps of velocity from other papers (see refs in this paper) show the fast flow is also much narrower (~5 km). Thus, it is really surprising that model does so well with things like the terminus retreat given that it should not be correctly reproducing the thinning well since it has the strain rates all wrong.

Figure 6a is somewhat unclear. Is the glacier really grounded as far out as they show (what happened to the floating ice tongue.) Is this just poor plotting that fails to distinguish between grounded and floating ice – though if that is the case why do some areas show a small floating ice tongue. Where are the bed elevations coming from where the tongue used to be? The 2012 observations plotted in Figure 6 should extend to within about 1-km of the terminus. Why then, if the model is doing such a good job with the terminus, are the modeled 2012 velocities 5-km forward of the observations (this seems to indicate the terminus position is off by 5-km). More likely it maybe the seasonal timing. It seems like winter positions are shown in Figure 2, not the much more retreated summer positions, which also drive the fluctuation in speed. Does the model capture the seasonal variation (the winter positions are not particularly informative because often the terminus in the winter is the front of a weak ice shelf that doesn’t really provide much buttressing).

Please explain the strong swings in speed at sub-annual time scales (Figure 3). In any given year from about 2000 onward, there are several swings in speed by more than 2000 m/yr (some as large as 10 km/yr). What is causing these fluctuations? The paper claims that the 2012 observations must be melt because the model does not reproduce
the observed speeds. Yet there are peaks in many years comparable to
the 2012 peak, and the modeled velocities at S1 are quite close to the
peak velocities in 2012. Why are there multiple (2-4) peaks in a given
year, which is inconsistent with the single seasonal peak shown by the
observations. What is driving this variability? Because it doesn’t seem
to line up with the melt season, I doubt it can be explained by whatever
seasonal forcing the model uses. If it has to do with the terminus
position and the thickness at the terminus, then I would argue that it
would confirm (not nullify) the hypothesis in the Joughin et al papers
because it demonstrates the kind of sensitivity they describe. The
differences could then be explained by the fact that there is no
overdeepening in the bed in the Bamber model at the location. In fact at
the 2012 terminus location, the Bamber DEM is about 700 meters deep
while the CRESIS DEM shows a sharp dip of 1300 meters. While one
can argue which DEM is better, we do note that the 2012 peak
corresponds well with the time when the terminus was at the
overdeepening and the subsequent lesser peaks (2013-2015)
correspond to when the terminus was at the upstream high (see also
comments in next paragraph). Furthermore, our analysis in the 2012
paper shows the seasonal variability can be explained by retreat and
advance over the slope downstream of the overdeepening. You can
choose to believe one bed model over the other, but you need to clearly
articulate why the differences exist (not merely dismiss the earlier
results based on the absence of a peak in your model, which as
described below it would be rather surprising if the skill was such that
it could predict the peak).

It is interesting that Figure 4 nails the mass loss so well, yet the
modeled speeds (S1/S2 Figure 3) are consistently biased high (eyeball
average by 2 to 4 km/yr – 20 to 30%). If they are indeed getting the
mass flux correct, with an ice stream that is too wide as well, then this
would indicate that the bed is too shallow. If the bed is not right, then
model will have a difficult time reproducing the observed behavior
(i.e., getting the 2012 peak right).

In summary, at a minimum this paper should do the following if it is to
• Better explain the ocean forcing (not clear what the ocean is doing – how much meltback of the terminus is occurring once the shelf is lost).
• Better explain what is driving the swings of in speed of 2 to 10 km/yr near the terminus over time scales of 3 to 4 months, which does not seem to indicate a seasonal behavior based on the timing.
• Better justify or remove the statements about the 2012 melt event as cause for the 2012 peak, because a) the model clearly can produce swings that large in other years and there is no reason to expect the model has the skill necessary to nail the timing of the 2012 peak precisely, particularly since the bed is not conducive to doing so (remarkably the model is not that far off in 2012); b) the model doesn’t do a very good job of reproducing the velocity field and by extension it can’t be doing a good job of reproducing the thinning patterns; c) simply because a model does not reproduce observed behavior, it can not be assumed to be the melt event by default as tempting as that may be given the melt that year, when there is little evidence for melt producing such changes on this glacier (see comments below) – and certainly not the point of saying that “it is proved” (again especially when there is so much unexplained variability in the modeled speed record); and d) the reference to Doyle does not provide good support for the reasons described below.

Specific Comments

4866:L7-10, “We identify two major accelerations. The first occurs in 1998, and is triggered by moderate thinning prior to 1998. The second acceleration, which starts in 2003 and peaks in summer 2004”

This makes is sound as though this work is the first to identify these accelerations. What the model does is find accelerations consistent with observations – this distinction should be made clear.

4866: L10-12: “As opposed to other regions on the Greenland Ice
Sheet (GrIS), where dynamically induced mass loss has slowed down over recent years,...”

This statement is really not supported by facts. It could be argued that the rate of increase in loss has declined. Although there is some inter-annual variability, losses were at their highest in 2011 (2012 was a close second and the two years were not significantly different) [Enderlin et al, 2014].

4866: L15-17 “Our analysis suggests that the 2012 acceleration of JI is likely the result of an exceptionally long melt season dominated by extreme melt events.”

This statement needs some revision in light of discussion below.

4866: L24:25 “Jakobshavn Isbrae is the largest outlet glacier in terms of drainage area as it drains ~ 6 % of the GrIS.”

This should say “one of the largest” not the “largest”. For example, Rignot has 79N at 103,314 km^2, while he has Jakobshavn at 92,080 km^2. Making statements like this just tend to introduce inaccuracies into the literature that then get repeated over and over.

4867: L2 coincides with thinning of up to 15 m a\(^{-1}\) between 2006 and 2012 near the glacier front (Nielsen et al., 2013) as observed from airborne laser altimeter surveys.

The period over which the thinning rate was 15 m/yr is longer than this and there are several other papers that have cited such a rate prior to the 2013 reference, including the Krabill et al 2003, and the Joughin et al, 2008, which with the Nielsen paper indicate thinning from 2003 to 2012 (I would say “from 2003 at least through 2012”, since the rates did not decline as of 2012 – if anything they have increased).

If you check the Luckman paper you will find measurements bridging this gap.
“The bed elevation dataset for all of Greenland has a 1 km spatial resolution”

The bed elevation model is “posted” at 1-km, the actual resolution is far poorer for most of Greenland as it was interpolated from flightlines many kilometers apart.

“Along the ice shelf calving front, we apply a physically based calving (eigencalving) parametrization (Winkelmann et al., 2011; Levermann et al., 2012) and an ice thickness condition (Albrecht et al., 2011).”

Should comment on how appropriate this law is for calving from a grounded terminus (potential several meters above flotation), which is a very different style than an a floating Antarctic ice shelf. And for that matter, is the terminus allowed to go above flotation? What is the dynamic boundary condition applied at the terminus (does it assume flotation)?

“In order to match the observed front positions a sub-shelf melting parameter (F_{melt}) with a value of 0.198 m s$^{-1}$ (see Eq. 5 from Martin et al., 2011) is used in our simulations and results in basal melt rates slightly larger than those obtained by Motyka et al. (2011).”

While I appreciate there is a reference cited, since a specific parameter is given it would help to have a little more detail (I assume the melt rate is not $365^\ast86400^\ast0.198$ m/s). Given a range for what the modeled melt rates are.

Also how is the melt rate applied to the vertical calving front once the ice shelf breaks up (i.e., how is the ocean coupled to the model once the shelf if gone).

“Smith et al”, should be “Joughin et al” (Smith was a coauthor).

“A previous analysis by Joughin et al. (2014) attributes the acceleration and the summer peak of 2012 to the retreat of the JI terminus to the bottom of an over deep-ened basin (see Fig. 3 from Joughin et al., 2014). This retreat, which started in 2009 (Joughin et al., 2014), should have triggered an acceleration of JI as soon as the terminus started to retreat in 2009 over the slope of the
over deepened basin. However, there is no evidence of such acceleration either in the observational record”

Please see Joughin et al., 2012, where we do an analysis that shows that all of the seasonal speedup can be attributed to the movement of terminus seasonally back and forth along the reverse slope. Note also the discussion there that as the terminus thins, this effect is lessened with time (i.e., see Figure 7, Joughin et al, 2012 for how thinning with time changes the overall response).

4873:L10 “which likely triggered the rapid acceleration in the observed ice surface speed in the summer of 2012.”

I don’t doubt some of these processes could have contributed to the timing of the calving events, but nothing presented thus far supports the idea that it was triggered by the extreme melt. In particular, most of the speedup occurred during the June and early July, before the melt events that are cited.

4873:L15 “Furthermore, a study by Doyle et al. (2015) found that during an amplified melt event (caused by late-summer cyclonic rainfall that occurred between 23 August and 3 September 2011) JIs speed increased by 10 % (see Fig. S3 in Doyle et al., 2015).”

If you examine the 2011 event referenced by Doyle, you see that there as a summer long build up in speed, with a late summer peak roughly corresponding to the period examined by Doyle et al. There is not a sharp signal or anything anomalous that corresponds that or any other particular melt event. All of the events Doyle examined show a decline following the melt event, generally late summer annual minimums by Sept 15 (see small speedup on Store, followed by below average). By contrast, Jakobshavn speeds in 2011 didn’t decline to a seasonal minimum until the following spring.

While Jakobshavn does have summer peaks, there is no real correspondence to the melt season. Some years the peak is in June, sometimes late summer (early September). Generally the speedup commences well before there is melt and extends to well after when there is melt. The timing of the peak tends to correspond well with
changes in the position of the terminus. 2013 was the second strongest peak, yet it was an extremely low melt year.

4873:L17:18 “Therefore, the influence of enhanced surface melting in JIs dynamics has been proven.”

Based on some handwaving, weak correlation, and the fact the model can’t reproduce the observations by no means constitutes a proof. I would say Joughin et al, 2012 and 2014 make a good case for the influence of the trough geometry, but I would not be so bold though as to say that it is proven (though there is much better evidence at this stage than for melt).

4873:L19-24 “Under normal circumstances (i.e. average melt years), the winter slow-down is usually able to compensate for the summer acceleration events. The summer of 2012 was however preceded by a series of warm summers (2007, 2008, 2010 and 2011) (Hanna et al., 2014), which may have created the conditions under which the winter slowdowns can no longer compensate for the summer accelerations leading to an increase in the mean annual flow.”

What exactly is meant by this statement (note 2013 was a below average year for SMB, yet its peak was higher than 2007, 2008, 2010 and 2011). The mean annual speed is such that Jakobshavn has been well out of balance for more than the last decade (well prior to 2007). Even the winter speeds are much faster (>2x) than the speeds prior to speedup. It is true the lower trunk thickens over the winter, but only at the expense of the inner catchment so the basin thins as a whole. Moreover, the net thinning in this region has been ~15 m/yr for more than the last decade. So what is meant by compensate????

4875:L1

Fix Smith et al., 2010 (see comment above);

4875:L24-25;

You should also cite the Luckman paper here as they present the best record for this period.
The period 2004–2014 is characterized in our simulation by relatively uniform velocities with strong seasonal variations (Fig. 3). During this period, the terminus remains close to the grounding line position with no episodes of significant retreat.

I would hardly describe the speeds in this time as uniform. Moreover, are the fluctuations seasonal or merely sub-annualy (they certainly seem more frequent than annual and I can’t tell at the resolution of the plot whether there is a strong seasonal correspondence. Certainly the frequency of variation is contrary to observations). The late summer grounded terminus over this period retreated by more than 6-km – does the model not reproduce this behavior – if so how is it claimed that the model well reproduces the observations?

“The acceleration that characterizes JI during 2012 is likely the result of an exceptionally long melting season dominated by extreme melt events (Nghiem et al., 2012; Tedesco et al., 2013; Hanna et al., 2014) and may not be caused by a retreat of the JI terminus to the bottom of an overdeepened basin”

The fact that model did not reproduce the summer speedup is not any kind of evidence that it must be due to the strong melt event. The Joughin 2012 paper uses quite a different bed model. While its arguable which model is better, the model they used can explain the seasonal variation. As mentioned above, the paper does not currently explain what is driving the large swings in speed in the model.

“Our model results provide evidence for two distinct flow accelerations in 1998 and 2003, respectively.”

This is written as though it’s a new discovery. But work by Luckman (for the 1998 speedup) and Joughin (for the 2003 speedup) basically show this. So it should say something more like “our model results are consistent with observations…”

“Furthermore, despite the slow-down of glacier speed in other drainage basins of the GrIS over recent years (Bevan et al.,

2012; Enderlin et al., 2014), our modelled and observed results suggest that JI has been losing mass at an accelerated rate, and it continued to accelerate through 2014 when other glaciers slowed.”

This statement makes it seem like Jakobshavn is the only glacier speeding up. While there is a lot of variability, Enderlin et al (2014) and Moon et al (2012) demonstrate that on average, Greenland’s glaciers are continuing to speedup.