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Abstract 12	
  

Airborne light detection and ranging (LidarDAR) snow-on and snow-off measurements collected 13	
  

in the southern Sierra Nevada near peak snow accumulation and in the snow-free season in the 14	
  

2010 water year were analyzed for orographic topographic and vegetation effects on snow 15	
  

accumulation during the winter season. Combining point-cloud data from four sites separated by 16	
  

10 to 64 km, and together covering with total surveyed area over 106 km2, it was observed in that 17	
  

the mixed-conifer forest the percent of pixels with snow-depth measurments is sensitive to the 18	
  

sampling resolution used in processing the point cloud. This is apparently due to Lidar not 19	
  

receiving returns from under the denser canopy. From the 1-m gridded data, it was observed that 20	
  

in addition to elevation effects, snow depth has a strong dependency on slope, aspect and canopy 21	
  

penetration fraction. A multivariate linear model built using all physiographic variables 22	
  

explained 15 to 25% more variability in snow depth than did a univariate linear model with 23	
  

elevation as a single predictor. However, the weight that each physiographic variable exerted on 24	
  

snow depth varied across different elevation ranges, as well as with different canopy-cover 25	
  

amounts. The difference between mean snow depth measured in open area and under canopy 26	
  

increased with elevation in rain-snow transition zone from 1500 to 1800 m and stabilized at 27	
  

about 25 to 45 cm above about 2000 m elevation, with the range reflecting the effects of other 28	
  

topographic variables. area, the 1-m elevation-band-averaged snow depth in canopy gaps as a 29	
  

function of elevation increased at a rate of 15 cm per 100 m until reaching the elevation of 3300 30	
  

m. The averaged snow depth of the same elevation band from different sites matched up with 31	
  

minor deviation, which could be partially attributed to the variation in other topographic features, 32	
  

such as slope and aspect. As vegetation plays a role in the snow accumulation, the distribution of 33	
  

the vegetation was also studied and shows that the canopy coverage consistently decreased along 34	
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the elevation gradient from 80% at 1500 m to near 0% at above 3300 m. Also, the absolute 35	
  

difference of the averaged snow depth between snow found in canopy gaps and under the canopy 36	
  

increased with elevation, and decreased with canopy coverage disregarding the variation of other 37	
  

topographic features. The influence from the forest density on snow accumulation was quantified 38	
  

based on the snow-depth residuals from 1-m elevation-band-averaged snow depth and the 39	
  

attribute penetration fraction, which is the ratio of the number of ground points to the number of 40	
  

total points per pixel of LiDAR data. The residual increases from -25 cm to 25 cm at the 41	
  

penetration fraction range of 0% to 80%; and the relationship could be modeled by exponential 42	
  

functions, with minor fluctuations along the gradient fraction of canopy and small deviation 43	
  

between sites. 44	
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1. Introduction 45	
  

 In the western United States, ecosystem processes and water supplies for agricultural and 46	
  

domestic use depend on the mountain snowpack asis the primary source of late-spring and early 47	
  

summer streamflow and is associated with agricultural and municipal water supplies (Bales et al., 48	
  

2006). Knowledge of spring snowpack conditions within a watershed is essential if water 49	
  

availability and flood peaks following the onset of melt are to be accurately predicted 50	
  

(Hopkinson et al., 2001). Both topographic and vegetation factors are important in influencing 51	
  

the snowpack conditions, as they closely interact with meteorological conditions to affect  52	
  

precipitation and snow accumulation distribution in the mountains (McMillen, 1988; Raupach, 53	
  

1991; Wigmosta et al., 1994). However, the distribution of mountain precipitation is poorly 54	
  

understood at multiple spatial scales because it is governed by processes that are neither well 55	
  

measured nor accurately predicted (Kirchner et al., 2014). Snow accumulation across the 56	
  

mountains is primarily influenced by orographic processes, involving feedbacks between 57	
  

atmospheric circulation and terrain (Roe, 2005; Roe and Baker, 2006). In most forested regions, 58	
  

snow accumulation is highly sensitive to vegetation structure (Anderson, 1963; Revuelto et al., 59	
  

2015; Musselman et al., 2008), and canopy snow interception, sublimation and unloading results 60	
  

in smaller less accumulations of snow beneath the forest canopies in comparison with canopy 61	
  

gaps (Mahat and Tarboton, 2013). 62	
  

 The Sierra Nevada is ideally suited for studying mountain snow distribution and related 63	
  

hydrologic processes because it serves as a barrier to moisture moving inland from the Pacific, 64	
  

provides has an ideal mountainous regionorientation for producing orographic precipitation, and 65	
  

thus exerts a strong influence on the upslope amplification of precipitation (Colle, 2004; Rotach 66	
  

and Zardi, 2007; Smith and Barstad, 2004). Recent studies have revealed some insights of snow-67	
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depth dependency on orographic and topographic effects in the Alps (Grünewald et al., 2013; 68	
  

Grünewald, et al., 2014; Lehning et al., 2011), suggesting that similar studies could be extended 69	
  

to the Sierra Nevada. And among the forested regions of the mountains, the mixed-conifer and 70	
  

subalpine zones cover most of the high-elevation, seasonally snow-covered area. The geographic, 71	
  

topographic, and vegetation conditions make the Sierra Nevada a natural laboratory in the 72	
  

western United States for studying mountain snow distribution and related hydrologic processes 73	
  

(Grünewald et al., 2013; Grünewald, et al., 2014; Lehning et al., 2011). 74	
  

 In order to have a better knowledge of precipitation and snow accumulation in the Sierra 75	
  

Nevada, Mmanual snow surveys, one-time surveys, and remote-sensing products are used to 76	
  

estimate precipitation and snow accumulation in the Sierra Nevadaand analyzed (Guan et al., 77	
  

2013). In  situ observations , operational measurements of snow water equivalent (SWE) were 78	
  

obtainedcome from monthly manual snow surveys and daily snow pillow observations 79	
  

(Rosenberg et al., 2011). Cost, data coverage, accuracy (Julander et al., 1998) and basin-scale 80	
  

representativeness are issues for in situ monitoring of SWE in mountainous terrain (Rice and 81	
  

Bales, 2010). Satellite-based remote sensing, such as MODIS, has been used to map snow 82	
  

coverage in large or even global areas. Fractional snow coverage, grain size and albedo have 83	
  

retrieved from MODIS data (Hall et al., 2002; Painter et al., 2009; Rittger et al., 2013), however 84	
  

the products do not fit catchment-size studies owing to its low spatial resolution. However, iIt 85	
  

also only provides snow-coverage information in canopy gaps, and no direct information on 86	
  

snow depths (Molotch and Margulis, 2008). There is also the SNOw Data Assimilation Systems 87	
  

(SNODAS) that integrate data from satellite and in situ measurements into a physical snowpack 88	
  

model, which provides SWE and snow- depth information estimates (Barrett, 2003). However, 89	
  

since Since the spatial resolution of SNODAS is 1 km and its products hasve not been globally 90	
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broadly evaluated (Clow et al., 2012), its potential for studying the snow distribution in 91	
  

mountainous areas remains uncertain. Also, owing to its 1-km spatial resolution, the snow depth 92	
  

that SNODAS provides is a mixed representation of both open and canopy-covered areas. 93	
  

SNODAS could not be used for studying the snow distribution on catchment scale in the Sierra 94	
  

Nevada.An orographic-lift effect is observable in most of the above data (Howat and Tulaczyk, 95	
  

2005; Rice et al., 2011), and a binary-regression-tree model using topographic variables as 96	
  

predictors has also been used for estimating the snow depth in unmeasured areas (Erickson et al., 97	
  

2005; Erxleben et al., 2002; Molotch et al., 2005). However, regression coefficients could not be 98	
  

estimated accurately for most of the predictors, except for elevation, and the consistency of the 99	
  

orographic trend as well as the relative importance of these predictors is still unknown owing to 100	
  

lacking representative measurements across different slopes, aspects and canopy conditions. And 101	
  

the stability of the variance explained by the model also needs to be tested with denser 102	
  

measurements.  103	
  

 In recent years, airborne LidarDAR has been employed for high-spatial-resolution 104	
  

distance measurements (Hopkinson et al., 2004), and has become an important technique to 105	
  

acquire topographic data with sub-meter resolution and accuracy (Marks and Bates, 2000). 106	
  

Therefore, LidarDAR provides a potential tool to help understanding spatially distributed snow 107	
  

depth across mountainous regions. With multiple returns from a single laser beampulse, 108	
  

LidarDAR has also been used to construct vegetation structures as well as observe conditions 109	
  

under the canopy, which helps produce fine-resolution digital elevation models (DEMs), 110	
  

vegetation structures, and snow-depth information. However, the snow depth under canopy can 111	
  

not always be measured because of the signal-intensity attenuation caused by canopy 112	
  

interception (Deems and Painter, 2006; Deems et al., 2006). A recent report applied a univariate-113	
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regression model to the snow depth measured in open areas using Lidar; with a high-resolution 114	
  

DEM used to accurately quantify the orographic-lift effect on the snow accumulation just prior to 115	
  

melt (Kirchner et al., 2014). From this analysis it could be expected that Lidar data might also 116	
  

help explain additional sources of snowpack distribution variability in complex, forested terrain. 117	
  

 Even without LiDAR surveys, Erickson et al., (2005) and Erxleben et al., (2002) have 118	
  

used intensive in situ SWE measurements with binary regression tree, linear and nonlinear 119	
  

multivariate regression models for studying the topographic and vegetation controls on the 120	
  

spatial distribution of snow in the Colorado Rocky Mountains. But the studying sites were 121	
  

smaller than catchment size, and the results were site dependent as well as the sampling schemes 122	
  

have to be taken into consideration. Recent snow distribution modeling methods developed upon 123	
  

LiDAR measurements have been focused on fractal analysis and linear regression. Even the 124	
  

fractal distributions of snow depth do not vary with sites on local scale from 1 to 1000 m (Deems 125	
  

et al., 2006) and the topographic dependency of spatial snow-depth distribution have been 126	
  

explored (Kirchner et al., 2014), consistency of the topographic and vegetation effects across 127	
  

sites still need to be addressed. 128	
  

 The objective of this work reported here is to improve our understanding of the effect of 129	
  

elevation, slope, aspect and canopy cover topographic and vegetation effects on snow 130	
  

accumulation in the mixed-conifer forest. We investigated these by using LiDAR Lidar data 131	
  

collected in four headwater catchments areas in the southern Sierra Nevada and address the 132	
  

following three questions. First, is it possible to have snow-depth measurements in forested 133	
  

mountain terrain from all pixels on a fine sampling resolution (1 to 5m) using Lidar data? If not, 134	
  

how does the percentage of pixels measured change with the sampling resolution. Second, what 135	
  

is the importance of slope, aspect and canopy penetration fraction on snow accumulation, 136	
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relative to elevation; and are effects consistent across sites? Third, what is the snow-depth 137	
  

difference between open and canopy-covered areas; how does it change with elevation; and is the 138	
  

difference stable with respect to other topographic variables? First, is there a consistent 139	
  

orographic effect on snow accumulation across catchments; and what attributes could account for 140	
  

variability across and within sites? Second, what is the snow-depth difference between canopy 141	
  

gaps, versus under canopy, along elevation; and is binary classification for canopy cover 142	
  

adequate to the differences? Third, how does forest density influence the snow accumulation in 143	
  

canopy gaps and if there are patterns, are they consistent across catchments? 144	
  

2. Methods 145	
  

2.1 Study Areas 146	
  

 The Our study areas areis located in the southern Sierra Nevada, approximately 80 km 147	
  

east of Fresno, California (Figure 1). The fFour headwater-catchment research areas, Bull Creek, 148	
  

Shorthair Creek, Providence Creek, and Wolverton Basin were previously instrumented, 149	
  

including meteorological measurements, in order to have a better knowledge of the hydrological 150	
  

processes in this region (Bales et al., 2011; Hunsaker et al., 2012; Kirchner et al., 2014). The 151	
  

sites were chosen as part of multi-disciplinary investigations at the Southern Sierra Critical Zone 152	
  

Observatory, and are also the main instrumented sites in the observatory. Wolverton is 153	
  

approximately 64 km away in the southeast direction of the other three sites (Figure 1) and is 154	
  

located in Sequoia National Park. Both snow-on and snow-off airborne LiDAR Lidar were flown 155	
  

in 2010 (Table 1, only later date collections were processed) over these sites. The elevation of 156	
  

the survey areas covers is from 1600-m to 3500-m elevation., over which Vvegetation density 157	
  

generally decreases with biotic zones ofin high-elevation subalpine forest, and with Wolverton 158	
  

also having a large area above treeline in Wolverton (Goulden et al., 2012). The precipitation has 159	
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historically been mostly snow in the cold and wet winters for elevations above 2000 m, and a 160	
  

rain-snow transition mix below 2000 m, where most of Providence is located. The comparison 161	
  

between Providence and the other sites can help in accessing if observed trends are consistent 162	
  

above and below the rain-snow transition. Also, various elevation spans of sampling sites is 163	
  

important in understanding the stability of the relative importance of physiographic variables 164	
  

across heterogeneous topography. 165	
  

2.2 Data Collection 166	
  

 AllBoth airborne LiDAR surveys were performed by using Optech GEMINI Airborne 167	
  

Laser Terrain Mapper. The scan angle and scan frequency were adjusted to ensure a uniform 168	
  

along-track and across-track point spacing (Table 2), and six GPS ground stations were used for 169	
  

determining aircraft trajectory. The snow-on survey date was close to April 1st, which is used by 170	
  

operational agencies as the date of peak snow accumulation for the Sierratime. Since the snow-171	
  

on survey lasted required four days to finish data collection overcover the four study areas, time-172	
  

series in situ snow-depth data measured continuously from Judd Communications ultrasonic 173	
  

depth sensors of the meteorological stations at Providence, Bull and Wolverton were used to 174	
  

estimate changes in snow depth during the survey period. for checking if precipitation had 175	
  

occurred during survey dates and While no snow accumulation was observed, also taking 176	
  

snowpack densification and melting observed from the time-series data were taken into 177	
  

considerations (Hunsaker et al., 2012; Kirchner et al., 2014). The snow-off survey was 178	
  

performed in August when after snow was had completely melted out in the study areas.  179	
  

2.3 Data Processing 180	
  

 Raw LiDAR Lidar datasets were pre-processed by NCALM and are available from the 181	
  

NSF Open-Topography website (http://opentopography.org) in LAS format. The LAS point 182	
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clouds, including both canopy and ground-surface points, are stored and classified as ground 183	
  

return and vegetation return.; Eeach point is also attributed with the total number of returns and 184	
  

position of all returns from its source laser pulsebeam. The 1-m resolution digital-elevation 185	
  

models, generated from the LiDAR Lidar point-cloud datasets, were downloaded from the 186	
  

OpenTopography database and further processed in ArcMap 10.2 to generate 1-m resolution 187	
  

slope, aspect, and northness raster products. Northness is an index for the potential amount of 188	
  

solar radiation reaching a slope on a scale of -1 to 1, calculated from: 189	
  

 190	
  

𝑁 = sin(𝑆)×cos(𝐴),                                                                                                             (1) 191	
  

 192	
  

where N is the northness value; S is the slope angle of the terrain; and A is the aspect angle. 193	
  

Northness is also the same as the aspect intensity (Kirchner et al., 2014) with 0° focal aspect. 194	
  

Since in this analysis the snow-depth comparison is only discussed between north and south 195	
  

facing slopes, northness is used instead of aspect intensity for simplification. To construct the 196	
  

vegetation structure from LiDAR Lidar data, points that are from the first return of the laser 197	
  

pulsebeam are used to generate 1-m gridded digital- surface models. And 1-m resolution canopy-198	
  

height models were was built by subtracting the digital-elevation models from the digital-surface 199	
  

models. 200	
  

 The snow depths were calculated directly from the snow-on LiDAR Lidar data. By 201	
  

referring to canopy-height models, all ground points in snow-on LiDAR Lidar datasets were 202	
  

classified as under canopy or in canopy gaps. That is, if the point was undercoincident with 203	
  

canopy of >2-m height, it was classified as under canopy, and otherwise in a canopy gap. After 204	
  

classification, snow depths were calculated by subtracting the values in the digital-elevation 205	
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model from the snow-on point-measurement values. The calculated point snow-depth data were 206	
  

further assigned into 1-m raster pixels, averaged within each pixel, formatted and then gap filled 207	
  

by interpolation with pixel values around it. Since the measurements collected under canopy 208	
  

were insufficient within each pixel (Figure 2) and varied across the transition from the tree trunk 209	
  

to the edge of the canopy, interpolation was not applied to data under the canopy. The error rate 210	
  

of the calculated snow depth should be mainly from the instrumental elevation error, which is 211	
  

about 0.10 m (Kirchner et al., 2014; Nolan et al., 2015). 212	
  

2.4 Penetration Fraction 213	
  

 The oOpen-canopy fraction is a factor that represents the forest density above a given 214	
  

pixel and is often used to describe the influence of vegetation on snow accumulation and melt. 215	
  

However there is no algorithm to directly extract this information from LiDAR Lidar data. Here 216	
  

we use a novel approach we call penetration fraction to approximate the open-canopy fraction 217	
  

from the LiDAR Lidar point cloud. Penetration fraction is the ratio of the number of ground 218	
  

points toand number of total points within each pixel. Because the electromagnetic radiation 219	
  

from both the LiDAR Lidar and sunlight beams are intercepted by canopies, the open-canopy 220	
  

fraction is used here as an index to represent the fraction of sunlight radiance received on the 221	
  

ground under vegetation. Therefore, penetration fraction of LiDAR Lidar is actually another 222	
  

form of estimating the open-canopy fraction (Musselman et al., 2013). Penetration fraction was 223	
  

calculated as the number of ground points divided by total points in each pixel (Figure 3a). 224	
  

However, under-canopy vegetation can also intercept the LiDAR Lidar beam causing a bias. To 225	
  

eliminate this bias, the canopy-height model was used to check if the pixel was canopy covered 226	
  

by using a threshold value of 2 m; and if not, the local penetration fraction of the pixel was reset 227	
  

to 1 because the open-canopy fraction of a pixel could not be entirely represented by the 228	
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penetration fraction. A spatial moving-average process was applied using a 2-D Gaussian filter 229	
  

with a radius of 5 m to account for the effect of the vegetation around each pixel. Finally, we 230	
  

tested the sensitivity of smoothing results to the radius of the filter and found it is not sensitive 231	
  

when the radius is greater than 1.5 m (Figure 3b). 232	
  

2.5 Statistical Analysis 233	
  

 The 1-m resolution snow-depth raster datasets were resampled into 2-m, 3-m, 4-m and 5-234	
  

m resolution. The percentage of pixels with snow-depth measurements was calculated by using 235	
  

the number of pixels with valid data divided by the total number of pixels inside each survey 236	
  

area. The sensitivity of the percentage changes across different resampling resolutions and the 237	
  

consistency of the percentages across study sites at the same resampling resolution were 238	
  

analyzed by visualizing the percentages against sampling resolutions at all sites. 239	
  

 Using elevation, slope, aspect, penetration fractionvegetation-structure and snow -depth 240	
  

retrieved from LiDAR Lidar measurements, orographic topographic and vegetation effects on 241	
  

snowpack accumulation were analyzed statisticallyobserved using residual analysis. Owing to 242	
  

orographic effects, there is increasing precipitation along an increasing elevation gradient in this 243	
  

area (Kirchner et al., 2014). Therefore, elevation was selected as the primary variable 244	
  

topographic attributeto fit the linear regression model for calculating the residual of snow depth. 245	
  

All snow-depth measurements from LiDAR Lidar were first separated by either under canopy or 246	
  

in canopy gaps, and then were binned by elevation of the location where they were measured, 247	
  

with a bin size of 1-m elevation. As each elevation band had hundreds of snow-depth 248	
  

measurements after binning, the average of all snow depths was chosen as the representative 249	
  

snow depth, and the standard deviation calculated to represent the snow-depth variability within 250	
  

each elevation band. Correlation cCoefficients of determination between snow depth and 251	
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elevation of each site were calculated by linear regression. The fitted linear regression model of 252	
  

each site was applied to the DEM to estimate the snow depth. The residual of snow depth was 253	
  

calculated by subtracting the modeled snow depth from Lidar-measured snow depth. The slope, 254	
  

aspect and penetration fraction were binned into 1∘ slope, 1∘ aspect, and 1% penetration-fraction 255	
  

bins. In this study we treat penetration fraction as a physiographic variable and snow-depth 256	
  

residuals corresponding to each bin of each physiographic variable were averaged and visualized 257	
  

along the variable gradient to check the existence of these physiographic effects.Northness and 258	
  

slope were also averaged by elevation band for cross comparison. The differences of averaged 259	
  

snow depth between in canopy gaps and under-canopy areas were calculated for each elevation 260	
  

band and cross compared with the vegetation fraction, northness and slope. 261	
  

 To account for effects other than elevation in the snow depth, a linear regression model of 262	
  

snow depth and elevation was applied to the digital-elevation data to estimate snow depth. The 263	
  

differences between the estimated and LiDAR-measured snow depths were further investigated, 264	
  

with respect to slope, aspect and penetration fraction, by binning the snow-depth difference into 265	
  

1° slope and aspect bins and 1% penetration-fraction bins. The difference values within each bin 266	
  

were averaged and the standard deviations were calculated. 267	
  

 For the variables found to correlate with the snow accumulation, the relative importance 268	
  

of each variable was calculated using the Random Forest algorithm (Breiman, 2001; Pedregosa 269	
  

and Varoquaux, 2011). A multivariate linear regression model was also fitted into all 270	
  

physiographic variables to calculate the regression coefficients, which could be used as the 271	
  

quantification of the effect on snowpack distribution from the variable. 272	
  

 To calculate the snow-depth difference between open and canopy-covered area along an 273	
  

elevation gradient, the 1-m resolution snow-depth data of the two conditions, open and canopy-274	
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covered, were smoothed separately against elevation using locally weighted scatterplot 275	
  

smoothing (LOESS) (Cleveland, 1979). The snow-depth difference was then calculated by 276	
  

subtracting the smoothed canopy-covered snow depth from that in open. 277	
  

3. Results 278	
  

 The percentage of pixels that have snow-depth data measured is highly sensitive to the 279	
  

sampling resolution used in processing the Lidar point cloud, which is about 65 to 90% with 1-m 280	
  

resolution and gradually increases to 100% at 5-m resolution (Figure 4). Note that the percentage 281	
  

increases in going from the lower to higher elevation sites, consistent with local forest density 282	
  

decreasing with elevation. 283	
  

 The snow depth estimated in canopy gaps shows a strong consistent linear trend with 284	
  

elevation across all sites (Figure 5a). The variability (Figure 5b) is highest at about 1500 m, and 285	
  

gradually decreases within rain-snow transition until elevation reaches 2000 m. However, at 286	
  

above 2000 m, the trends of variability changing along elevation gradient vary across sites. cy of 287	
  

distribution patterns and variability across the four sites (Figure 4a, 4b). In general, snow depth is 288	
  

linearly correlated with elevation at all sites, both in the open area and under the canopy. , snow 289	
  

depth under the canopy is consistently less than in the canopy gaps (Figure 5a). Note that values 290	
  

at the upper or lower ends of elevation at each site have few pixels and maybe less representative 291	
  

of the value of physiographic attributes in the study areas (Figure 54c). The forested area, of all 292	
  

four sites combined, spans the rain-snow transition zone in mixed conifer through subalpine 293	
  

forest to significant areas above treeline. The snow-depth difference between canopy gaps and 294	
  

under-canopy varies with elevation, generally increasing from near zero at 1500 m, where there 295	
  

is little snow but dense canopy, to 40 cm in the range of 2000-2400 m, and varying from near 296	
  

zero to 60 cm at higher elevation where snow is deeper and canopy less dense. 297	
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 For each individual site, the a least-squares linear regressions of snow depth and versus 298	
  

elevation were was used to investigate the spatial variability of snow -depth across sites. The 299	
  

median elevation of the three sites increases in going from Providence to Bull to Shorthair. The 300	
  

lowest elevation at Providence Creek is less than goes down to 1400 m, and snow depth 301	
  

increases steeply in this region at a rate of 38 cm per 100 m in canopy gapsopen areas and 28 cm 302	
  

per 100 m under the canopy. Bull Creek has an elevation range of 2000-2400 meters, which is 303	
  

slightly higher than Providence, and has snow depth increasing at 21 cm per 100 m in canopy 304	
  

gaps open areas and 19 cm per 100 m under the canopy. For Shorthair Creek site, which is the 305	
  

highest of the three, the snow depth increases at 17 cm per 100 m in canopy gapsopen areas and 306	
  

16 cm per 100 m under the canopy. Wolverton is 64 km further south and spans a wide elevation 307	
  

range, going from the rain-snow transition in mixed conifer, to subalpine forest, to some area 308	
  

above treeline. The average snow-depth increase is smallest among all four study sites, 15 cm 309	
  

per 100 m in canopy gaps and 13 cm per 100 m under the canopy. Unlike the other three lower-310	
  

elevation sites, the snow depth at Wolverton site decreases after above 3300-m elevation. 311	
  

However The amount of area above this elevation is relatively small, and factors such as wind 312	
  

redistribution and the exhaustion of perceptible water can also affect snow depth at these 313	
  

elevations (Kirchner et al., 2014). the amount of area above this elevation also drops off steeply. 314	
  

 The residuals for the snow in the open areas were further analyzed for effects of slope, 315	
  

aspect and penetration fraction. The snow-depth residual decreases about 10 to 40 cm as slope 316	
  

angle increases from 0∘ to 60∘; and the residual decreases around 50 to 100 cm in going from 317	
  

north-facing to south-facing slopes (Figure 6a, 6b). More interestingly, the topographic effect 318	
  

can be seen from the color pattern of northness observed in the scatterplots (Figure 7a, 7b). The 319	
  

residual increases about 40 to 60 cm as penetration fraction increases from 0% to 80% (Figure 320	
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6C). Considering all of these variables together, elevation is the most important variable at all 321	
  

sites except for Shorthair, which has a relatively small elevation range (Figure 8). Aspect exerts a 322	
  

stronger influence than do slope and penetration fraction in open areas. However, for under-323	
  

canopy areas, penetration is more dominant than aspect at two sites. The multivariate regression 324	
  

model was fitted to the data with aspect transformed into 0° to 180° range (north to south). 325	
  

Fitted models could be represented as the following two equations for open area and under 326	
  

canopy respectively, 327	
  

𝑆𝐷 = 0.0011×𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 − 0.0112×𝑆𝑙𝑜𝑝𝑒 − 0.0057×𝐴𝑠𝑝𝑒𝑐𝑡 + 0.1802×𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛    (2) 328	
  

𝑆𝐷 = 0.0009×𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 − 0.0128×𝑆𝑙𝑜𝑝𝑒 − 0.0046×𝐴𝑠𝑝𝑒𝑐𝑡 + 0.9891×𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛    (3) 329	
  

where 𝑆𝐷 is snow depth and p-values of all regression coefficients of the two models are all 330	
  

smaller than 0.01. 331	
  

 The snow-depth difference between open and canopy-covered area was calculated with 332	
  

elevation from locally smoothed snow depth (Figure 7). It The snow-depth difference between 333	
  

canopy gaps and under-canopy varies with elevation, generally increasinges from near zero at 334	
  

1500 m, where there is little snow but dense canopy, to 40 cm in the range of 2000-2400 m, and 335	
  

variesying from near zero to 60 cm at higher elevations where snow is deeper and the canopy 336	
  

less dense.dense. It is apparent that the snow-depth difference increases with elevation in the 337	
  

rain-snow transition zone, but lacks a clean pattern along either elevation gradient or penetration-338	
  

fraction gradient when the elevation is higher. 339	
  

 A visual inspection of the pattern of snowpack distribution with elevation for all sites 340	
  

shows a consistent pattern (Figure 4). Especially for the elevation range where Providence and 341	
  

Wolverton overlap, the patterns of snow depth change are the same for both sites, with the only 342	
  

difference being Wolverton snow depth is consistently less than that in Providence, which is 343	
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likely due to a small amount of densification that occurred between the two acquisitions (Table 1) 344	
  

observed from depth sensors. 345	
  

 At higher elevations, vegetation coverage decreases consistent with lower temperature, 346	
  

and soil depth. By cross comparing the vegetation fraction and snow-depth difference (Figure 5a, 347	
  

5b), similar patterns were observed at all sites along elevation gradient. Also, for most of the 348	
  

elevation range investigated, the snow-depth difference was either increasing or remaining 349	
  

constant, except for 2300 to 2500 m at Wolverton, where the snow-depth difference drops 350	
  

drastically, which may be explained by steeper and more southerly exposed slopes (Kirchner et 351	
  

al., 2014) (Figure 6). 352	
  

 The snow-depth residual deviation from a linear increase with elevation, investigated 353	
  

versus penetration fraction (Figure 7), indicates how the density of vegetation affects the snow-354	
  

depth accumulation in canopy gaps. For all sites, the snow-depth residuals increase with 355	
  

penetration fraction, with bias across sites and fluctuations at higher penetration fractions. 356	
  

 357	
  

4. Discussion 358	
  

4.1 Sensitivity of measurements to sampling resolution 359	
  

 The results of the percentage of pixels with snow depth measured from Lidar data at 360	
  

different sampling resolutions illustrate that even high-density airborne Lidar measurements do 361	
  

not have 100% coverage of the surveyed area at 1-m resolution, especially in densely forested 362	
  

areas. According to the snow-depth difference between snowpack in open areas and under 363	
  

canopy, the trade-off between accuracy and coverage happens when adjusting the resolution; and 364	
  

lower sampling resolutions can introduce overestimation into the results. This is because upon 365	
  

averaging, sub-pixel area under the canopy that was not measured is represented by the open that 366	
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is measured, introducing an overestimation error into the averaged snow depth of the pixel. 367	
  

Therefore, the sampling resolution for processing the Lidar point cloud needs to be chosen 368	
  

according to the objective and accuracy tolerance of the study. 369	
  

 The overall increasing trend of precipitation with elevation observed from airborne 370	
  

LiDAR data is consistent with the orographic effect on precipitation (Roe, 2005; Roe and Baker, 371	
  

2006) and less snow accumulation was observed under vegetation at all sites. The decrease in 372	
  

under-canopy snow is consistent with previous work using ground-based data (Bales et al. 2011, 373	
  

Musselman et al. 2008, and Varhola et al. 2010). Finally, the penetration fraction explained part 374	
  

of the snow-depth residual of the linear model between snow depth and elevation. 375	
  

4.14.2 Orographic Physiographic effect on snow accumulation 376	
  

 Below 3300 m, the increasing trend of snow accumulation with elevation was observed 377	
  

for all sites (Figure 54). Linear regression is applicable to model the relationship between snow 378	
  

depth and elevation when the study area has a broad elevation range. This holds true for all of 379	
  

our sites with the exception of Shorthair, where the elevation range is about 200 m and As 380	
  

indicated in Table 3, the correlation coefficient of determination forof this linear model used for 381	
  

Shorthair site is much smaller than the other three sites, which have ranges greater than 500 m. 382	
  

The other three sites all have elevation range larger than 500 m; however the elevation spans 383	
  

around 200 m at Shorthair site. The bias of mean snow depth in the same elevation band between 384	
  

different sites is acceptable if the standard error is being added or subtracted from the mean 385	
  

(Figure 54a, 54b). The data-collection time, spatial variation and variations of other topographic 386	
  

features should introduce bias across sites. However, as data-collection time only differs a few 387	
  

days, in situ snow-depth sensor data suggest that the melting and densification effect should 388	
  

bewas under 2 cm (https://czo.ucmerced.edu/dataCatalog_sierra.html). Spatial variations at 389	
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1800-2000 m elevations between Providence and the further- south Wolverton site appear to 390	
  

have a consistent bias, with less precipitation falling in the southerly location. As for other 391	
  

topographic variables, the observation of a slope effect, shown as the trend lines in Figure 6a and 392	
  

the negative regression coefficients of the two linear models, could be explained by steeper 393	
  

slopes having higher avalanche potential, fewer trees and thus more wind; and thus some snow is 394	
  

more likely to be lost from these slopes. Snowpack located in south-facing slopes receives higher 395	
  

solar radiation, with the snowmelt being accelerated (Kirchner et al., 2014). This explains the 396	
  

trends observed in Figure 6b and the negative regression coefficients of the multivariate models. 397	
  

Although Lidar has measurement errors caused by slope and aspect (Baltsavias, 1999; Deems et 398	
  

al., 2013; Hodgson and Bresnahan, 2004), error is not able to be quantified and traced back to 399	
  

each variable and we assumed its influence on the trends could be neglected. As canopy 400	
  

interception results in reduced snow depth under canopy, the snow-depth residuals are found 401	
  

increasing with penetration fraction and the regression coefficients are positive (Figure 6c). The 402	
  

multivariate linear regression model built from the Lidar data is a significant improvement, as 403	
  

the variability of the snowpack distribution could explain 15 to 25% more than the univariate 404	
  

linear regression model with elevation as the only predictive variable (Table 4) and the 405	
  

estimation bias has a narrower distribution (Figure 9a, 9b). Also, fitting an individual linear 406	
  

model for each site is slightly better than using a general model with all sites’ data involved 407	
  

(Figure 9c, d) and it might because that an individual model could capture regional micro-408	
  

climate within the site better than a general model. The opposite trend of the relative importance 409	
  

of predictive variables observed in Shorthair is because it is a relatively flat site (Figure 1, Figure 410	
  

8), which implies that topographic variables other than elevation need to be focused more when 411	
  

studying about areas with small elevation ranges in future works. For other topographic features, 412	
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Kirchner et al. (2014) proposed that northness and slope should have negative effects on snow 413	
  

accumulation. They noted that northness is positively correlated with solar radiation, and thus 414	
  

ablation, and northeastness deposition from prevailing winds. Steeper slopes also have has higher 415	
  

avalanche potential and snow is more likely to fall off from these slopes. Across the elevation 416	
  

range that we studied, the snow depth is globally smaller at Wolverton than all other sites; 417	
  

however the northness and slope are globally higher at Wolverton, which is consistent with the 418	
  

northness and slope effects on snow accumulation could exist. Also, the separate investigations 419	
  

on slope and aspect (Figure 6) show that smaller snow-depth residuals could be observed on 420	
  

steeper or more southerly exposed slopes, which further proved the existence of the northness 421	
  

effect. From Figure 2 we also need to notice that each site has about 10% to 24% of total 422	
  

surveyed area does not have point return because of canopy interception. Thus the statistical 423	
  

results are representative but not conclusive of surveyed sites. 424	
  

4.24.3 Vegetation effects on snow accumulation along elevation 425	
  

  426	
  

Under-canopy snow distribution is governed by multiple factors that affect the energy 427	
  

environment, as observed by melting (Essery et al., 2008; Gelfan et al., 2004) and accumulation 428	
  

rates (Pomeroy et al., 1998; Schmidt and Gluns, 1991; Teti, 2003). Our results show different 429	
  

responses when comparing the snow-depth difference between open and canopy-covered areas 430	
  

between study sites (Figure 7c). In the rain-snow transition zone from 1500 to 2000 m of 431	
  

Providence we see a sharp linear increase between open and under-canopy accumulation that is 432	
  

likely governed by the under-canopy energy environment and the canopy-interception effect on 433	
  

precipitation, which accelerate snowmelt and prevent accumulation of under-canopy snow. 434	
  

Above 2000 m, the snow-depth difference observed at Bull and Shorthair stabilized around 40 435	
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cm and 20 cm respectively, with fluctuations less than 10 cm along elevation.The snow depth in 436	
  

open areas is increasing 2 cm / 100m to 12 cm / 100m steeper than snow depth in under-canopy 437	
  

areas (Table 3). Schmidt and Gluns, (1991) found that the snow intercepted by canopy increases 438	
  

with cumulative snowfall and the interception would saturate when the precipitation is heavy 439	
  

enough. Therefore, in our study sites, with more snow intercepted at higher elevation, the snow-440	
  

depth increasing slope of under-canopy observations is gentler than open areas. Breaking from 441	
  

this pattern, the large dip in snow-depth difference, down to 10 cm, observed at Wolverton at 442	
  

elevations of 2250 - 2750 m deviates from the 35-40 cm plateau. Also, the snow-depth difference 443	
  

at Shorthair stabilizes around 20 cm, which is 20 cm lower than the stabilized value at Bull. 444	
  

Based on the scatterplot in Figure 7a and 7b that color coded by northness, at elevation range of 445	
  

2300 m to 2700 m, there are a lot more data points with both low snow depth and extremely 446	
  

negative northness in the open area than under the canopy, which implies that anisotropic 447	
  

distribution of other topographic variables is affecting the snow-depth difference. This is further 448	
  

shown by filtering out the data points not within a small certain range (-0.1 to 0.1) of northness, 449	
  

and then reproducing Figure 7c using the filtered data. As presented in Figure 10, it is apparent 450	
  

that the large dip at Wolverton is flattened out to a canopy effect of around 25-45 cm as the 451	
  

topographic effect is filtered out. Thus a sigmoidal function was used to characterize the snow-452	
  

depth difference changes with elevation excluding topographic interactions. The interactions 453	
  

between topographic variables and vegetation is most likely attributable to the under-canopy 454	
  

snowpack being less sensitive to solar radiation versus snowpack in the open area (Courbaud et 455	
  

al., 2003; Dubayah, 1994; Essery et al., 2008; Musselman et al., 2008, 2012).  456	
  

 In spite of filtering the topographic effect, there is still about a 20-cm magnitude of 457	
  

fluctuation in the snow-depth difference, which might be attributed to various clearing sizes of 458	
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open area at different locations and various vegetation types in the forests (Hedstrom and 459	
  

Pomeroy, 1998; Pomeroy et al., 2002; Schmidt and Gluns, 1991), however, these features of the 460	
  

sites are not able to be explored from this Lidar data set. 461	
  

 The difference of averaged snow depth between open and under-canopy areas increases 462	
  

with elevation as vegetation coverage decreases (Figure 5a, 5b). We found that a high density of 463	
  

vegetation exerts a negative influence on snow accumulation in canopy gaps, which makes the 464	
  

snow-depth difference less significant at lower elevations. With precipitation increasing along 465	
  

the elevation gradient, the difference of snow depth between open and canopy-covered areas also 466	
  

increases; and in more densely forested areas, even though the open area does not have canopy 467	
  

right above the ground (Hedstrom and Pomeroy, 1998; Pomeroy et al., 2002; Schmidt and Gluns, 468	
  

1991) they can still be influenced by the canopies around them. Golding and Swanson (1986) 469	
  

found that the difference increased with clearing size, caused by snow ablation as well as direct 470	
  

solar radiation reaching the snowpack. Another cause of this effect could be traced back to how 471	
  

precipitation drops on the ground. As precipitation has both horizontal and vertical velocities, in 472	
  

a densely forested area a small fraction of snowflakes or raindrops would be intercepted by the 473	
  

vegetation, not only vertically, but also horizontally. Therefore, the snow accumulated in the 474	
  

open area that is surrounded by dense vegetation would actually be smaller than the snow 475	
  

accumulated in a wide-open area. This is also consistent with the finding that areas at the drip 476	
  

edge have snow-depth values, intermediate between under canopy and in the open (Bales et al., 477	
  

2011). Thus in the more-open forests at higher elevation, the under-canopy and in-canopy-gap 478	
  

allow for greater snow-depth differences. Since the differences could change in different forest 479	
  

conditions and also under the effect of drip-edge transitions, binary classification of in canopy 480	
  

gaps and under-canopy does not work for quantifying differences in snow accumulation. 481	
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 Furthermore, the pattern could be altered as some other topographic feature varies. We 482	
  

observed a sudden drop of snow-depth difference in the elevation range of 2300-2500 m at 483	
  

Wolverton from Figure 5a. By visually inspecting the vegetation-pixel percentage, northness, 484	
  

and slope along the elevation gradient (Figure 4d, 5b, 5c), it is observed that the vegetation pixel 485	
  

percentage decreases constantly at a low rate and northness decreases from positive to negative 486	
  

(north dominant to south dominant); while the slope kept increasing significantly in this 487	
  

elevation range. Dubayah (1994), Courbaud et al. (2003), and Essery et al. (2008) found that 488	
  

slope is a dominant factor in modeling the solar radiation received by the soil when canopy 489	
  

structures remain constant, and more solar radiation would be received on steeper south facing 490	
  

slopes, which could be the cause of the snow-depth difference decrease that we observed. 491	
  

4.3 Quantify vegetation effects on snow accumulation 492	
  

 In the previous section, we reasoned that vegetation reduces snow accumulation in 493	
  

canopy gaps by blocking the snow that in a less-dense forest would fall to the ground. Vegetation 494	
  

density is a significant factor (Teti, 2003), as we observed that snow-depth difference increases 495	
  

when vegetation fraction decreases. Figure 7 shows the quantification of the vegetation-density 496	
  

effects on the snow-depth accumulation. Considering the blocking of snow from vegetation 497	
  

(Pomeroy et al., 1998; Schmidt and Gluns, 1991), the vegetation density should be transformed 498	
  

into open fraction that one could see from the given pixel. In this case, penetration fraction was 499	
  

applied to represent percentage opening. As is shown in Figure 7a, the snow-depth residual 500	
  

differed from the linear increase with elevation is highly correlated with penetration fraction, 501	
  

which implies that penetration fraction is a good indicator of vegetation effects on snow 502	
  

accumulation. Moreover, the ranges of the snow-depth residual are similar and the patterns of 503	
  

snow-depth residual changing against penetration fraction are consistent across sites, as the 504	
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studied sites share similar vegetation structures and climate conditions (Fites-Kaufman et al., 505	
  

1970). The consistency of changing patterns supports the idea of modeling the relationship 506	
  

between vegetation density and snow depth so that the effects from vegetation on open area 507	
  

snow accumulation could be quantified. 508	
  

5. Conclusions 509	
  

 As an advanced and promising remote-sensing technology, Lidar is able to measure snow 510	
  

depth of 100% survey area at 5-m sampling resolution however the accuracy is still left to be 511	
  

evaluated because of lacking enough representative measurements under the canopy. A 1-m 512	
  

resolution processed Lidar data set is more accurate but the percentage of pixels with 513	
  

measurements is much less than 100%.  514	
  

 Using processed Lidar data sampled at 1-m resolution, averaged snow depth within each 515	
  

1-m elevation band shows a strong correlation with elevation at all sites, indicating that snow 516	
  

accumulation in the southern Sierra Nevada is primarily affected by orographic lift. Snow-depth 517	
  

residuals calculated by de-trending the elevation dependency are correlated with slope, aspect 518	
  

and penetration fraction, which shows the effect of additional physiographic variables on snow 519	
  

accumulation other than elevation. The relative importance of these variables in predicting snow 520	
  

depth implies that other than elevation, aspect affects snow-accumulation and retention more in 521	
  

open areas, while penetration fraction is as important as aspect for snow under the canopy. More 522	
  

significantly, a multivariate linear regression model fitted with variables for slope, aspect and 523	
  

canopy penetration fraction explains 15 to 25% more snow-depth variability than using elevation 524	
  

as the only predictive variable, suggesting multiple predictive variables will be more effective for 525	
  

quantifying the water equivalent in the Sierra Nevada at peak snow accumulation. 526	
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 The snow-depth difference between open and canopy-covered areas increases in the rain-527	
  

snow transition elevation range and then stabilized around 25 to 45 cm at high elevation. Large 528	
  

magnitude of fluctuations are presented at certain elevation ranges in Wolverton and Shorthair, 529	
  

which is partially due to interactions from other topographic variables, evidence of which is 530	
  

found by filtering the northness into a narrow band and which causes the fluctuations flattening 531	
  

out.The regression analysis of snow depth versus terrain and vegetation attributes that are 532	
  

extracted from LiDAR show that snow accumulation in the southern Sierra Nevada is strongly 533	
  

affected by both the orographic effect and vegetation factors, and are consistent across the four 534	
  

sites studied. Comparing these results across sites reveals that the altitudinal effects on snow 535	
  

accumulation are consistent and globally linear, with a lapse rate of approximately 15 cm per 100 536	
  

m. By cross comparing between snow depth and other topographic features along the elevation 537	
  

gradient, we confirmed that the variability of snow depth, after de-trending the altitudinal effect, 538	
  

could be further explained by attributes such as slope and aspect. The characterization of snow-539	
  

depth difference between open and canopy-covered area, together with vegetation fraction, not 540	
  

only suggests that the snow-depth-difference increase along the elevation gradient is because of 541	
  

vegetation density decreasing, it also suggests that, penetration fraction can be used to 542	
  

quantitatively study vegetation effects on snow accumulation. Moreover, the analysis of the 543	
  

snow-depth residual from the altitudinal trend and penetration fraction reveals that the vegetation 544	
  

effects on snow accumulation are consistent across the four study-sites, implying that the effects 545	
  

could be quantified and modeled mathematically. 546	
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   1	
  

Table 1. LiDAR data collection information 1	
  

 Snow-off flight date Snow-on flight date Area, km2 

Bull 

Shorthair 

Providence 

Wolverton 

August 15, 2010 

August 13, 2010 

August 5, 2010 

August 13-15, 2010 

March 24, 2010 

March 23, 2010 

March 23, 2010 

March 21-22, 2010 

22.3 

6.8 

18.4 

58.9 



	
   2	
  

Table 2. Flight parameters and sensor settings 2	
  

Flight parameters Equipment settings 

flight altitude 

flight speed 

swath width 

Swath overlap 

point density 

Cross track res 

Down track res 

600 m 

65 m s-1 

233.26 m 

50% 

10.27 p m-2 

0.233 m 

0.418 m 

wavelength 

beam divergence 

laser PRF 

scan frequency 

scan angle 

scan cutoff 

scan offset 

1047 nm 

0.25 mrad 

100 kHz 

55 Hz 

±14° 

3° 

0° 



	
   3	
  

Table 3. Linear regression of averaged snow depth vs. elevation in four sites 3	
  

 Bull Shorthair Providence Wolverton 

Open R2 

Vegetated R2 

0.968 

0.978 

0.797 

0.737 

0.931 

0.921 

0.914 

0.972 

Open slope, cm per 100 m 

Vegetated slope, cm per 100 m 

21.6 

19.9 

16.1 

13.1 

37.8 

26.0 

15.3 

13.4 



	
   4	
  

Table 4. Coefficients of determination of univariate and multivariate linear models 4	
  

 Univariate model R2 Multivariate model R2 

Bull 

Shorthair 

Providence 

Wolverton 

All sites 

0.23 

0.06 

0.39 

0.16 

0.43 

0.37 

0.32 

0.53 

0.38 

0.57 

 5	
  



	
   5	
  

 6	
  
Figure 1.  Study area and Lidar footprints. (Left) California with Sierra Nevada. (Center) Zoomed view to 7	
  

show the locations of Lidar footprints. (Right) Elevation and 200-m contour map (100-m for Bull) of 8	
  

LiDAR footprints 9	
  



	
   6	
  

  10	
  

Figure 2. (a) Normalized histogram of the number of ground points for under canopy pixels. (b) 11	
  
Normalized histogram of the number of ground points in open pixels. 12	
  



	
   7	
  

 13	
  

Figure 3. (a) Dividing the number of ground points of each 1-m pixel by the total number of points in the 14	
  
pixel will result the penetration fraction of the local pixel. (b) Sensitivity of the smoothed penetration 15	
  
fraction to the smoothing radius, showing that the result is not sensitivity as the radius is larger than 1.5 m. 16	
  

(a)

(b)



	
   8	
  

 17	
  

Figure 4. Sensitivity of the percentage of pixels with snow depth measured to the sampling resolution 18	
  
used in processing the Lidar point cloud at each site. 19	
  



	
   9	
  

	
  20	
  

Figure 5. (a) Averaged snow depth from snow-on and snow-off Lidar data versus elevation for pixels in 21	
  
the open at the four sites. (b) Standard error of the snow depth within each 1-m elevation band. Values 22	
  
above 3400 m not shown, where there are few data. (c) Total area of averaged data within each elevation 23	
  
band. (d) Averaged northness of each elevation band from four sites. 24	
  



	
   10	
  

 25	
  

Figure 6. (a) Averaged snow-depth residual along slope. Raw snow-depth residual was calculated from 26	
  
Lidar measured snow depth and estimated snow depth from the linear regression model (open areas). (b) 27	
  
Averaged snow-depth residual along aspect. (c) Averaged snow-depth residual along penetration fraction.	
  28	
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  29	
  

Figure 7. LOESS smoothed snow depth with northness color coded scatterplot of raw-pixel snow depth 30	
  
against elevation for (a) open area (b) canopy-covered area. (c) Snow-depth difference along elevation 31	
  
calculated from the LOESS smoothed snow depth. (d) Averaged penetration fraction. 32	
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 33	
  

Figure 8. Relative importance of each physiographic variable in predicting the snow depth from each site 34	
  
for (a) open area (b) canopy-covered area 35	
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 36	
  

Figure 9. Normalized density of estimation bias for (a) open area (b) canopy-covered area; Estimation 37	
  
bias boxplots of using one general linear model with all sites’ data combined and four linear models of 38	
  
each individual site for (c) open area (d) canopy-covered area. 39	
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Figure	
  10.	
  Snow-­‐depth	
  difference	
  between	
  open	
  and	
  canopy-­‐covered	
  area:	
  comparison	
  between	
  42	
  
using	
  raw	
  1-­‐m	
  pixel	
  snow	
  depth	
  and	
  northness-­‐filtered	
  1-­‐m	
  pixel	
  snow	
  depth,	
  together	
  with	
  the	
  43	
  
sigmoidal	
  fit	
  of	
  the	
  snow-­‐depth	
  difference	
  changing	
  with	
  elevation	
  44	
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