RESPONSES TO REVIEWER 1

May 3, 2017
Introduction
Response to Reviewer 1

Already the introduction of the submitted paper should mention the availability of such important sources and clarify what exactly the goals and added values could be of a special focus on Europe. What are the “issues” mentioned in the title: observations, process understanding, modeling, scenario development, impact assessment or communication with the public/policymakers, etc.? To what do the terms “past”, “current” and “future” relate: To the historical development of observational strategies, to major steps in scientific progress, to emerging research fields, to changes in nature, to time scales of years, decades, centuries, etc.? What was the concept for the reflection and synthesis procedure beyond compiling and enumerating many publications (especially of seven key authors with their names in up to 25 references each)? Was the intention to break the results down into key messages or should this be left open on purpose? What are the logics behind the structure of the presentation?

Response: The lead authors of the manuscript have attended to the many interesting points raised and despite the rather short intro, we believe that this now reflects the aims and scopes of the texts that follow. We also explicitly mention that the review paper is by no means exhaustive, but rather reflects the state of knowledge brought by scientists to a scientific workshop held in Switzerland in March, 2016.
Section 2a
Response to Reviewer 1

The subsections of chapter 2 on the cryosphere components should all follow the same scheme for better comparison; section 2.1 is a good example with a brief general introduction followed by a summary of observed changes and then a discussion of likely future changes.

Response: We agree that it is very beneficial to keep the sections comparable by using a similar structure as in section 2.1. The intro of section 2.4 has accordingly been further improved/clarified by a slight re-arrangement of the text in that sense.

Snow and ice research in the Scandinavian mountains seems to be rather weakly represented and options offered by the explosive development of remote sensing capacities and new surveying technologies could be a stronger focus.

Response: We added a few more references from the Scandinavian mountains and rephrased the corresponding and the final concluding paragraph. We checked for current literature describing changes based on remote sensing. However, we could not find any since mountains regions were often explicitly excluded or the available time series of newer high resolution analysis are too short.

Discussions in the paper in most cases apply a rather linear/sectorial approach. Essential challenges relating to the rapid changes in the cryosphere, however, concern interactions and integrated systems including humans and their infrastructure, especially in densely inhabited regions like the Alps. Fall, winter and spring snow plays a key role concerning subsurface thermal conditions and perennially frozen ground on more gentle slopes but less so in steep rock faces. The stability of steep/cold hanging glaciers on rock walls strongly depends on basal ice temperatures and related permafrost conditions in bedrock, an issue often ignored in the corresponding literature. Vanishing ice at the surfaces of rock walls can enlarge effects from rising air temperatures with respect to freeze/thaw cycles, frost weathering, permafrost degradation and rock fall activity.

Response: this addresses more issues related to the cryosphere that will be handled below.

Responses to minor comments:
p.3 l.2: A figure has been added to the chapter
p.3 l.3: We agree and added two corresponding sentences.
p.4 l.6: Thanks for this hint. We added the corresponding time period.
p.4 l.15: We agree and changed the wording accordingly.
p.4 l.27: corrected
p.4 l.28: We believe this fact is not important in this context and therefore did not include it in order to make the manuscript not any longer.
p.5 l.15: corrected
p.5 l.16: corrected
I - Responses to the annotated version (pdf):

P.5, l.19: “This section would better have the same structure as 2.1 (observed and future changes). It should focus on essential aspects and international networks/concepts.”
Response: Done. As proposed by reviewer 1, we changed the structure of this section, including one section on «observed changes in glaciers» and one section on «the future of European glaciers». For that purpose, we merged and shortened the initial sections 2.2.1 and 2.2.2 into one section 2.2.1: «observed changes in glaciers», and added a new section. For both sections, we highlighted physical mechanisms that explain the observed and future changes. We also send the reader to the other sub-section (3x) where the challenges to improve these estimates are already listed.

P.5, l.20: “Probably first of all, glacier changes are a primary key indication of rapid and global climate change.”
Response: done, the sentence has been reworded: “Mountain glaciers are recognized as a key indicator of rapid and global climate change. They are important for water resources…”

P.5, l.24: “Better eliminate: European glaciers are irrelevant concerning global sea level. In case this has to remain, the latest overview concerning glaciers and sea level would be Marzeion et al. (2016): doi:10.1007/s10712-016-9394-y”
Response: Done. Removed.

P.5, l.24: “These are interesting papers but not really related to anticipating hazards related to glacier retreat”. Hazards and risks related to the formation of new lakes would be a far better example, see Frey et al. (2010): doi:10.5194/nhess-10-339-2010 or Haeberli et al. (2016): doi.org/10.1016/j.geomorph.2016.02.009.”
Response: References have been added and the formation of new lakes included.

Response: Done. A reference to Carturan et al. (2016) has been added.

P.5, l.27: “True: Europe has by far the densest and most continuous observation network in the world. European glaciers have therefore been the backbone in the development of modern comprehensive monitoring concepts (GTN-G/GCOS).”
Response: The sentence has been reworded: “Since 1894, glacier observations became internationally coordinated and continental Europe was the leader of this remarkable development.”
P.5, l.31 : “These were point observations (better avoid the term „mass balance“ for such point observations), not comparable with the glacier mass balance programmes, which started after World War 2.”

Response: This section has been shortened and the observations on Clariden are not mentioned anymore.

P.5, l.33 : “Mention Storglaciären, Sarennes and Storbreen here rather than on lines 30/31.”

Response: This section has been shortened and the observations on these three glaciers are not mentioned anymore.

P.6, l.5 : “Better „calibrating“. Homogenizing is somewhat else (cf. Zemp et al. 2013, TC7)”

Response: The sentence has been removed in the new text.

P.6, l.8 : “Here or in the previous section, the comprehensive analyses of all glaciers in the European Alps by WGMS (1995, 2007) and Zemp et al. (2006) should be mentioned”

Response: Analysis of observed changes in Europe was addressed using various references. We have listed the most recent reviews of these changes.

P.6, l.9 : “Total volumes are also available - the uncertainty of the estimates is about plus/minus 20%.”

Response: Done and added in Table 1.

P.6, l.13 : “Add „intermittently“.”

Response: Done

P.6, l.21 : “Why is this part here? No future? Better integrate the essential aspects (NAO, temperature, albedo) into the previous section on observed changes.”

Response: Done. Sections have been changed. Mechanisms are now detailed in the “observed changes” section.

+++++

II - Response to the general comments:

Comment : « Snow and ice research in the Scandinavian mountains seems to be rather weakly represented and options offered by the explosive development of remote sensing capacities and new surveying technologies could be a stronger focus. »

Response: "Actual and future remote sensing capacities and new surveying technologies are addressed in section 3.X (Grand challenges).”

+++++++

Comment : “But what do we learn from this in comparison with, for instance, the repeated precision mapping of glaciers in the Eastern Alps since the end of the 19th century (not mentioned)?”

Response: In comparison to repeated glacier mapping at intervals of several decades, mass balance measurements provide insights into the response of glaciers to climate forcing at short (seasonal) temporal scales and therefore allow understanding the driving processes.
We however fully agree with the reviewer that the value of glacier inventories in glaciology also needs to be mentioned. However, no more text has been added considering: first, this information appears in the papers listed in Table 1 (the reference papers for the glacier surface area in the different countries). Second, a sentence already mentioned the interest of repeated inventories to estimate glacier retreat throughout the 20th Century. “Repeated inventories showed a reduction in glacier area of 11% in Norway between 1960 and the 2000s (Winsvold et al., 2014), and 28% in Switzerland between 1973 and 2010 (Fischer et al., 2014)”

Comment: “Already in 1894, glacier observations became internationally coordinated with the participation of the European countries being the backbone of this remarkable step. Later, several integrative treatments of all glaciers in the European Alps have been published, marking major steps in the development of worldwide glacier monitoring. The inventory analysis in 1995, for instance, was a pioneer effort elaborated on behalf of UNEP for estimating various physical parameters (including shear stresses, response times or thermal conditions, etc.) for all glaciers and provided the first reliable estimates of ice thicknesses and volumes. The comprehensive treatment in 2007 used the example of the European Alps for illustrating the integrated tiered monitoring concept developed for the Global Terrestrial Network for Glaciers (GTNG) within the terrestrial component of the Global Climate Observing System (GCOS in support of UNFCCC, not mentioned), i.e. at highest scientific and political levels.”

Response: Sentences were reworded to address the international coordination of glacier monitoring in Europe and to highlight the integrative value of long-term monitoring: “Since 1894, glacier observations became internationally coordinated and continental Europe was the leader of this remarkable development. Gathering the rich and unique records of observations in earlier centuries, including paintings, photography (Zumbühl et al., 2008), length-change measurements (Zemp et al., 2015), direct surface mass balance observations, repeated mapping of surface elevation or remote sensing observations of changes in surface state (e.g. snowline, albedo, debris cover), allowed integrative studies to assess extent, surface, ice thickness and volume changes of various glaciers.”

Comment: “Integration of length and mass change data with the “dynamic fitting” concept (Oerlemans 1998; Climate Dynamics) within the framework of the international ICEMINT project among other integrative analyses (for instance, Zemp et al. 2006; Geophysical Research Letters) already showed many years ago with simple but physically sound models and techniques that the glaciers of the European Alps would largely disappear within decades even with moderate climate scenarios (see also Salzmann et al. 2012 concerning effects of a global 2° goal; Environmental Research Letters). This is important to mention – especially concerning impacts/adaptation – because it documents that results from simple as well as complex model simulations concerning future glacier evolution in the European Alps have been available and robust for many years now (not everything is uncertain). In a similar way, information on long-term commitments concerning continued glacier shrinking due to delayed responses (Mernild et al. 2013, TC 7/5) should also be included, because it shows that it is most probably too late now to save more than small remains of the European glaciers. Such critical reflection about the relative importance and innovative input of the available scientific literature could again help with focusing on essential messages.”

Response: This comment is now thoroughly addressed in section “The future of European Glaciers”. Projections of future changes are detailed in terms of the variety of models and
approaches. The response of European glaciers even under a stabilized global warming of around +2°C is discussed. Suggested references have been cited.

++++++

Comment: “Discussions in the paper in most cases apply a rather linear/sectorial approach. Essential challenges relating to the rapid changes in the cryosphere, however, concern interactions and integrated systems including humans and their infrastructure, especially in densely inhabited regions like the Alps. Fall, winter and spring snow plays a key role concerning subsurface thermal conditions and perennially frozen ground on more gentle slopes but less so in steep rock faces. The stability of steep/cold hanging glaciers on rock walls strongly depends on basal ice temperatures and related permafrost conditions in bedrock, an issue often ignored in the corresponding literature. Vanishing ice at the surfaces of rock walls can enlarge effects from rising air temperatures with respect to freeze/thaw cycles, frost weathering, permafrost degradation and rock fall activity.”

Response: This is an important comment, partly related to the field of permafrost research (see respective references to recent studies in that section). We have now added an additional paragraph on the thermal regime of glaciers and basal condition including new references and a description of processes. Cold glacier instabilities as a consequence of atmospheric and dynamical changes in the last decades are described in the section “observed changes”.

++++++
Section 2c
Response to reviewer 1

Only one author (?) seems to treat permafrost (three illustrations, many citations are missing in the reference list).

Response: we apologize for the missing citations – the reference list has now been updated.

Discussions in the paper in most cases apply a rather linear/sectorial approach. Essential challenges relating to the rapid changes in the cryosphere, however, concern interactions and integrated systems including humans and their infrastructure, especially in densely inhabited regions like the Alps. Fall, winter and spring snow plays a key role concerning subsurface thermal conditions and perenniably frozen ground on more gentle slopes but less so in steep rock faces. The stability of steep/cold hanging glaciers on rock walls strongly depends on basal ice temperatures and related permafrost conditions in bedrock, an issue often ignored in the corresponding literature. Vanishing ice at the surfaces of rock walls can enlarge effects from rising air temperatures with respect to freeze/thaw cycles, frost weathering, permafrost degradation and rock fall activity.

Response: We would like to thank the reviewer for the suggestion of additional topics to be included in this chapter and tried to now to better link the snow and the permafrost chapter. We think though that an additional focus on frost weathering/rock fall would be a bit outside the main focus of this chapter with its present aims.
A review or even “comprehensive assessment” about such complex matters as “the mountain cryosphere in Europe” cannot deal with everything but should at least mention what is being left out. In the submitted paper, lake ice with some long observational series and in cases heavy touristic use (St. Moritz, for instance) belongs to this category. Ice core drilling in cold high-altitude firn areas (for instance, Monte Rosa or Mont Blanc) should be mentioned as providing important information about pollution in industrial times and even climatic conditions during the Holocene. Mention should be made of cold miniature ice caps at lower altitudes (Oetztal iceman, Juvéfonna in Norway, recent Ortles drilling) about cold/millennia-old ice now or soon melting away, indicating that the reduction in ice extent in European mountains may presently exceed variability ranges during pre-industrial times. Warming up and degradation of rock glacier permafrost which has persisted during the last about 10,000 years as documented in permafrost core drilling (for instance, Lazaun, South-Tirol) would also be an essential process characterizing the state of the mountain cryosphere. And how realistic are attempts to save glacier ice with white blankets or even artificial snow?

Response: All comments have been integrated into the manuscript of the text, and missing literature has been added to the references section. The lake ice issue has been added to the meltwater hydrology section. (Cold miniature ice caps at lower altitudes, warming up and degradation of rock glacier permafrost, and the attempts to save glacier ice with white blankets or even artificial snow)
The contributions about the wide field of ecosystems in connection with snow, permafrost or glacier fore-fields appear to remain marginal if not random (two case studies from zoobiology, two illustrations).

Response: An attempt has been made in the revised version of the manuscript to better integrate these aspects into the overall objectives of the paper. To this end, paragraphs were merged and streamlined to provide a text whose structure is similar to the other paragraphs of Section 2.
Concerning model approaches, needs and priorities for process understanding should be clearly discriminated from needs and priorities concerning impact assessments and practical applications. As an example, some short remarks on page 20, lines 25-29, refer to the results of an inter-comparison project concerning models for ice thickness estimates. Here, it could be mentioned that sophisticated flux-related approaches reflect our complex scientific understanding and are needed for sensitivity analyses but must be heavily tuned, etc. In practical applications, transparency, robustness, easy application or limited data requirements in simple stress-driven models (which need no excessive tuning and perform equally well) can be a serious advantage. In fact, realistic modeling of glacier bed topographies and DEMs without glaciers over large mountain areas (Linsbauer et al. 2009, for example) as probable future topographies has been a fundamentally important innovation. This step had been made possible by the combination of 3D approaches (already introduced by WGMS in the 1990s using the example of the European Alps) with digital terrain information. It opened the door for the emerging research field dealing with future landscapes in de-glaciating mountain chains and could well be one of the key messages of the review. This example illustrates that a systematic differentiation – who needs what? – may help with breaking down the extensive discussions into key messages of interest even for non-scientific circles.

Response: Section 3.2 has been revised. My main comment here is formulated at the end of Section 3.2; In this section, the snow part has been condensed/shortened (mainly focusing on the challenges) at the benefit of some paragraphs on the grand challenges in modeling of glaciers and permafrost.
Geomorphology (two to three authors?) mainly relates to hazardous phenomena but largely ignores landscape change with options for use but also new risks. General thoughts about uncertainty/communication (2 illustrations) are correct but not specific to Europe, mountains or the cryosphere.

Response: The main aim of the chapter - as the title states - is on geomorphic risks arising from melting permafrost, and this has been described in detail in paragraphs under 3f. Many of these processes are similar across the mountain ranges of the world and not specific to the Alps alone, as the referee states. We do not see, however, why we should not mention uncertainty/communication only because similar assumptions/observations can be made elsewhere. Landscape change was not the focus of this contribution, but we agree that some indication of some possible benefits, new opportunities could be mentioned, preferably however in the conclusion section rather than in chapter 3f where the focus is on hazards and risks.
Section 4
Response to reviewer 1

The conclusions of the paper elaborate on general aspects concerning data availability and communication but – surprisingly enough – say nothing concrete about the state of knowledge, the evolution or practical impacts related to the mountain cryosphere in Europe, nor do they provide specific recommendations for focused research. This leads to the impression that the contribution in its present state constitutes a rather preliminary “workshop report”. Transforming it into a systematic, balanced, critically reflected and focused scientific review about the European mountain cryosphere with essential messages and concrete recommendations would need additional steps requiring deeper reflection about topics/ sources, more synthesis/weighting efforts, a clearer/more systematic structure and especially consensus-finding about key messages and recommendations for the future. The following thoughts (mainly on glaciers, permafrost, geomorphology/hazards and landscape change) may indicate some possibilities.

Chapter 4 could focus on special challenges; here an explanation would have to be given about the reasoning behind the corresponding selection of topics.

One of the most important topics, which should be included in a paper about the mountain cryosphere, is the rapid development of new landscapes – an important emerging field of research and climate change adaptation. Dealing with this topic necessitates a systems approach including socio-economic aspects. An example are the numerous new/future lakes which create opportunities for hydropower, tourism or water supply but also increase risks from impact/flood waves created by large rock/ice avalanches. The terms “hazard” and “risk” should thereby be clearly discriminated. Concerning hazards, a clear discrimination should also be made between processes/phenomena (avalanches, floods), which are mainly driven by short-term weather conditions and have a stochastic-type of temporal occurrence patterns on one side, and cumulative processes/phenomena (glacier vanishing, permafrost degradation, slope stability, landscape change), which now continuously evolve over longer time intervals. For the latter, the future will not only be different from the past but also from the present. This requires a specific and rather difficult hazard-prevention and risk-reduction strategy (scenario-based assessments including socio-economic aspects) to be developed and applied. A deeper understanding of future conditions in nature also requires consideration of different response characteristics related to the involved cryosphere components and the corresponding geo- and ecosystem factors. While glacier vanishing now is a matter of decades, permafrost degradation or slope destabilization can take centuries if not millennia to come. This means that European high mountain regions are experiencing a rapid transformation from glacial to periglacial landscapes with extreme disequilibrium conditions concerning slope stability, sediment cascades, or vegetation cover, etc.

Back to the conclusions, which may be the critical aspect concerning the value of the product: A number of bullet points formulating key messages and recommendations would help. They would document the necessary analytic reflection and synthesis process, thereby making the difference between a heterogeneous workshop report and a systematic, balanced, critically reflected and focused scientific review with a clear added value as compared to already existing modern reviews on mountains and the cryosphere. Specific remarks Specific remarks and suggestions can be found in the annotated file. The reference list is variable in style and largely incomplete (citations in the text not contained in the reference list are marked in pink). Careful editing is necessary.

Response: The lead authors of the manuscript have modified the conclusions section to reflect more faithfully – but also succinctly – the information contained in the main body of the text. To our knowledge, every effort has been made to complete the list of references.
Introduction
Response to Reviewer 2

A stronger, more integrated synthesis of what is known about current and future cryospheric change in Europe; what has already been resolved by many studies to date, and what are the key knowledge gaps.

Response: The lead authors of the manuscript have attended to the many interesting points raised and despite the rather short intro, we believe that this now reflects the aims and scopes of the texts that follow. We also explicitly mention that the review paper is by no means exhaustive, but rather reflects the state of knowledge brought by scientists to a scientific workshop held in Switzerland in March, 2016.
Section 2
Response to Reviewer 2

A section on elevation-dependent climate and cryosphere trends in the different regions might offer a good focus on a hot topic, providing a vehicle for integrative discussion and strategic (vs. sometimes ad hoc seeming) graphical additions to the manuscript. For instance, can changes in snow, temperature, precipitation, rock temperature, and glacier thickness be potted vs. elevation in Norway and the Alps? Integrating all available data.

Response: Of course, a comprehensive comparison of elevation-dependent climate and cryosphere trends and integrating all available data would be a very powerful and interesting outcome of the paper. However, for all the mentioned fields like changes in snow, temperature, precipitation, rock temperature or glacier thickness (changes) the required observations and data are not (yet?) there.
European and more regional-scale maps and trend values (tables) of recent changes in snow, permafrost and glaciers, and perhaps also projected changes; right now there is discussion of all of this, but more on a case study basis, and it is difficult to infer general conclusions.

Response: To compile such a table is currently almost impossible since existing studies analyze the snow cover changes using, for example, different time periods and altitudes ranges. A European scale analysis would require a database of snow observations containing data for all relevant areas so that the changes can be assessed using common time periods and elevation bands. A table regarding future changes would be more realistic, but still has the problem with different altitudinal ranges and new problems concerning different emission scenarios and different climate models.

Also the explanation of stable snow cover due to increasing Eurasian snow cover does not make sense; what is meant by Eurasian (does this include the Alps), and can the geography and atmospheric process(es) that connect the proposed links be more specifically explained?

Response: The original sentence was misleading since we missed to mention that only the Eurasian snow cover in autumn is increasing. We corrected this now. In this case Eurasia does not include the Alps. We give two references since the atmospheric processes are complex and under debate.

Is it still true, and generally accepted, that there has not been winter warming over the Alps or 'large areas of the northern hemisphere' since the 1990s? This seems surprising. Also not consistent with some of the narrative p.11, l.14, discussion of warmer winters giving increased winter rainfall runoff.

Response: Yes it is still true and not in contradiction with p.11 l.14, because the non further increasing temperature are just valid for meteorological winter month DJF and for higher elevations (roughly above 1000 m)

p.4, ll 2-6, discussion of Alpine snow cover changes. Some things don’t make sense as described. For instance, it does not seem reasonable that SWE and snow depth will decline while snow-covered area does not change. In winter perhaps, but spring and summer snow cover will surely decrease if there is a thinner snow pack.

Response: We agree this was misleadingly written. We rephrased and replaced the sentence to the end of the paragraph.
Section 2b
Response to Reviewer 2

p.18, nice discussion of the uncertainties and challenges of spatial scale; I was left wanting though, for how to bridge local to catchment and RCM/GCM scales when it comes to observational validation at the larger scales. Some perspective and thoughts here would be welcome – what is needed to give e.g. SWE or snow hydrological datasets at the larger scales, for model validation?

Response: Very good point. Recent sensing technology (e.g., ALS and TLS) can provide spatially resolved data of SCA and snow depth. Missing elements (data) related to the snow mass balance are spatially distributed snow density, and liquid water content data as well as local wind data for modeling snow transport, drift, erosion, redistribution etc. These quantities can be modeled, but corresponding data sets should be available for the validation of such model outputs. Related to snowpack energy balance, distributed snow albedo data would be desirable. Limitations in spatial resolution in satellite remote sensing data do not allow for high resolution surface albedo suitable for model validation. A promising approach here could be the use of drones or other UAVs equipped with radiometers and multispectral cameras. Current studies give evidence that this field is rapidly evolving. --- This information has been added in Section 3.2 of the manuscript.

p.19, l.14, out of curiously, what percentage of the European landscape is above 3000 m? Somehow I guess it is not much more than 1%, so I am curious how under-represented these high elevations are. p.19, l.21 “are crucial

Response: The reviewer is right, there is only a small areal fraction of the European landscape with elevation >3000m and the majority of data originates from lower altitude stations. However, if we consider the areal fraction in which cryospheric processes are relevant, in particular permafrost and perennial snow during the summer, this percentage of this fraction is more important and observations from these areas are crucial for the study of the state and processes of the cryosphere. --- A corresponding sentence has been included in Section 3.3

p.19, l.29, “has allowed a better understanding of” p.21, l.17 “are also a subject” p.22, l.21, “focus on” p.25, l.2, “built” p.25, l.13, “concepts”

Response: All suggested edits have been attended to in the revised manuscript.
Section 2c
Response to reviewer 2

European and more regional-scale maps and trend values (tables) of recent changes in snow, permafrost and glaciers, and perhaps also projected changes; right now there is discussion of all of this, but more on a case study basis, and it is difficult to infer general conclusions.

Response: There are currently no regional scale maps or trend values for current and projected permafrost change in Europe - partly, because there is only an insufficient number of borehole data available, but mainly because the heterogeneity of the mountain regions is so large, and permafrost depends strongly on surface and subsurface characteristics (e.g. fractures/unfractured rock, fine/coarse-grained sediments, porosity etc), microclimatic factors (energy balance of the whole atmosphere/active layer system, convection in the active layer etc) in addition to classical topoclimatic factors (elevation, aspect, slope angle). In addition, the heterogeneity of the snow cover which may vary spatio-temporally on very small scales is an additional influencing factor, as it effectively insulates the permafrost from atmospheric influences. This is why case studies dominate the scientific analysis - we include these statements now in section 2.3.
Section 2d
Response to reviewer 2

Figure 5. Is the glacier runoff on this chart the specific runoff, i.e. mm/month per unit area of glacier cover? Or is it normalized over the full catchment? Probably the latter, given the values. In which case, the overall runoff reduction by end of century is less than I would have expected, given the values. In which case, the overall runoff reduction by end of century is less than I would have expected, given the dashed lines for the control period, especially for RCP4.5. Is it because there is some extra summer rainfall helping out, or are the deglaciated basins giving new lakes that help to reserve and release meltwater through the summer months? Is the latter process included?

Response: The runoff is given as mm (= l/m2) per month and accounts for the entire catchment as defined by its gauge. The dashed lines indicate runoff from the respective glacierized area only (explanation in the figure). The magnitude of the modelled regime shift is due to the relation between the runoff originating from glacier melt compared to runoff originating from precipitation. This relation is catchment-specific.

(We have replaced fig. 5 with a newer version, according to our newest simulations, and considered all comments to improve it accordingly).
Section 3a
Response to reviewer 2

p.18, nice discussion of the uncertainties and challenges of spatial scale; I was left wanting though, for how to bridge local to catchment and RCM/GCM scales when it comes to observational validation at the larger scales. Some perspective and thoughts here would be welcome – what is needed to give e.g. SWE or snow hydrological datasets at the larger scales, for model validation?

Response: Very good point. Recent sensing technology (e.g. ALS and TLS) can provide spatially resolved data of SCA and snow depth. Missing elements (data) related to the snow mass balance are spatially distributed snow density, and liquid water content data as well as local wind data for modeling snow transport, drift, erosion, redistribution etc. These quantities can be modeled, but corresponding data sets should be available for the validation of such model outputs. Related to snowpack energy balance, distributed snow albedo data would be desirable. Limitations in spatial resolution in satellite remote sensing data do not allow for high resolution surface albedo suitable for model validation. A promising approach here could be the use of drones or other UAVs equipped with radiometers and multispectral cameras. Current studies give evidence that this field is rapidly evolving. --- This information has been added in Section 3.2 of the manuscript.

p.19, l.14, out of curiously, what percentage of the European landscape is above 3000 m? Somehow I guess it is not much more than 1%, so I am curious how underrepresented these high elevations are. p.19, l.21 “are” crucial

Response: The reviewer is right, there is only a small areal fraction of the European landscape with elevation >3000m and the majority of data originates from lower altitude stations. However, if we consider the areal fraction in which cryospheric processes are relevant, in particular permafrost and perennial snow during the summer, this percentage of this fraction is more important and observations from these areas are crucial for the study of the state and processes of the cryosphere. --- A corresponding sentence has been included in Section 3.3.

p.19, l.29, “has allowed a better understanding of” p.21, l.17 “are also a subject” p.22, l.21, “focus on” p.25, l.2, “built” p.25, l.13, “concepts”

Response: All suggested edits have been adopted in the manuscript.
Section 3f
Response to reviewer 2

p.26, Figure 8 discussion. Differences are shown in mm/day and the graphic is interesting. For context, is it possible to give a value of the average DJF and JJA precipitation for one or two high-elevation examples, perhaps in Switzerland – i.e. is a difference of 5 mm/day equivalent to 30%, 50%, 80%, etc? Some idea of the scaling would be helpful to assess whether the magnitude of differences is significant. Also, are these three datasets covering the same period? The Swiss-Italian border seems to show up prominently here. Is this related to altitude, or national measurement protocols? It might be interesting to make a plot of the precipitation difference vs altitude, at least for the central European subset of data. Norway might have its own story, but this is also worth a look.

p.26, Figure 9 could be better discussed as well. The figures show precipitation anomalies – is this the ‘error’ vs. observations? Against what observational dataset? Again, some idea of the scaling would be helpful, e.g. and average wet or dry bias of *% for a given region. Perhaps consider again plotting the anomaly vs. altitude. I would love to see some discussion of the processes involved in wet vs. dry biases in different models, while appreciating that this may be beyond the current scope.

p.26, l.34, “can provide adequate data for modelling atmosphere-cryosphere systems” – I think this is arguable – the biases over mountain regions are still huge with nested RCMs; processes here simply aren’t resolved.

Figure 8. Note in the caption that these are three different observational products, and also the time frame for each of these (is it the same, e.g., 1979-2014?)

Figure 9. These precipitation maps are expressed as anomalies: with respect to what? Please state in the caption.

Response: The purpose of the Figure 8 is just to highlight the differences of the OBS datasets (we could make the figure again in percentage to make him/her). The period of the observation are coincident and for such kind of paper any more in depth analyses it would be out of context. There are many other papers cited in the references that deals with this problem.

Figure 9 shows the precipitation anomaly for each ensemble member compared to the ensemble average. No observations are involved in the figure.
RESPONSES TO REVIEWER 3

May 3, 2017
Introduction
Response to reviewer 3

General comments: My major concern is: “What can the reader learn from the paper as it stands now?” “What is the benefit of the paper in comparison to the list of individual papers summarized/extracted there”? My expectation is that from summarizing the previous studies/papers new insight/findings should result. This is what I clearly miss in the paper. It is much too much a summary of previous studies without extracting new information and introducing innovation.

If the aim of the paper is to deal with mountain cryosphere your discussion has to cover more than only glaciers, permafrost and snow, such as lake- and river ice or cave ice. At least you have to make clear that (and why) you exclude these parts of the mountain cryosphere (because of whatever reasons).

Response: The lead authors of the manuscript have attended to the many interesting points raised and despite the rather short intro, we believe that this now reflects the aims and scopes of the texts that follow. We also explicitly mention that the review paper is by no means exhaustive, but rather reflects the state of knowledge brought by scientists to a scientific workshop held in Switzerland in March, 2016.
Further, I do not really see the benefit of sections 2.4 to 2.6 for achieving the aim of the paper. These chapters make the paper longer and leaves the reader alone with question why exactly these topics were selected as examples (there are several things left out with respect to e.g. the cryosphere and ecosystem functioning or the cryosphere and hydrological impacts, which are important). For your discussion of past, current and future issues of mountain cryosphere the detailed description of impacts is not needed (at least not as shown in the paper now). If you want to show issues/challenges coming from the impacts you have to make this more explicit.

Response: Chapter 2 is on the trends in the cryosphere, and their impacts. We clearly announce this in the introduction of the paper. Accordingly, the author team developed a list of current/future trends and respective impacts, which is reflected in the structure of chapter 2. We do not claim these phenomena to be complete, but consider it to be a collection of the most significant. The respective changing runoff regimes in glacierized catchments are an effect of climate change and of high importance for the water management along the mountain rivers. For more completeness, we have included the lake ice break-up topic. Finally, we have modified the heading of chapter 2.4 to make clear that we relate to the melting of snow and ice as important components of the mountain cryosphere here.
In section 2.1 the past and future evolution of snow is described. Surprisingly, there is no single figure on snow development in the paper. However, snow could be seen as the key component of the cryosphere, highly relevant not by itself but also as a key forcing of changes of glaciers and permafrost through direct impact and various feedbacks. Thus, at least one figure on changes of snow parameters as well as their spatiotemporal evolution would be key for a paper on the status/changes of the cryosphere.

Response: We have added a map showing the spatiotemporal trends in spring snow water equivalent for the European Alps. This particular figure was adapted because the data it is based on several countries and a long time period unlike most other studies that focuses on smaller regions and shorter periods.

Chapters covering both the glacier changes and the changes of snow cover are rather descriptive without real understanding of underlying mechanisms, beside the impact of NAO. However, the discussion of the impact of the NAO on snow and glaciers in the Alps and Scandinavia remains general. This appears bit “old-fashioned” approach and leaves the reader with simple findings which are already well known.

Response: We agree and added some information about the influence of the AMO.
Section 2b
Response to reviewer 3

Comment: «Chapters covering both the glacier changes and the changes of snow cover are rather descriptive without real understanding of underlying mechanisms, beside the impact of NAO. However, the discussion of the impact of the NAO on snow and glaciers in the Alps and Scandinavia remains general. This appears bit “old-fashioned” approach and leaves the reader with simple findings which are already well known.”

 Response: Sections have been completed to detail physical mechanisms of the observed and future changes, causes and consequences.

+++++

Comment: Figures 1 and 2: Would be good to know where the measurements of glacier length/mass balance and borehole temperatures are located in Europe.

 Response: Done. Countries names have been added in Figure 1.
Section 2c
Response to reviewer 3

Heading 2.3.4 Modelling (please explain with respect to what?)

Response: Changed to "Permafrost evolution modelling"

Figures 1 and 2: Would be good to know where the measurements of glacier length/mass balance and borehole temperatures are located in Europe.

Response: I suggest to include a new figure (Figure 1 new) where all major sites mentioned in the text are located - map of Europe with an insert for the European Alps. Better than have individual maps for all variables (glacier, permafrost boreholes etc)

Figure 4: Figure captions has to be increased in size.

Response: Figure 4: Figure subtitles and axis titles have been increased in size.
Section 2d
Response to reviewer 3

In chapter 2.4, you are discussing changes in hydrology, however in fact you are discussing changes in stream flow (amount) only.

Figure 5: The figure needs to be simplified and more generalized for a review paper. What is the meaning of dashed lines?

Response: We have accordingly adopted the heading of the chapter, re-arranged the introductory part and included an explanation of the importance of meltwater to streamflow, and its meaning for the downstream population. This also represents the necessary connection to chapter 2.5. We also have added a short mention to the lake ice break-up issue, and we have updated fig. 5 from our newest simulations.
Section 2f
Response to reviewer 3

Figure 6 and 7: You have two figures for this rather specific impacts but no figure on snow. My advice is to skip at least one of these figures.

Response: Because we have streamlined and merged parts of this text, we feel that the two figures can be of interest as examples of ecosystem responses to cryospheric changes.
Section 3
Response to reviewer 3

Generally, the paper is too descriptive and without an integrating approach (e.g. synthetizing the findings from snow, glaciers and permafrost to new information). My impression is also, after reading the paper, that your main aim was not achieved. The challenges that need to be addressed in future research remains open. For example, you mention data-issues as a core challenge. However, your conclusion on this important topic are rather general and un-specific and implies no in-depth treatment of the topic.

Response: Because we have made many changes to this Section 3, in response to many other comments pertaining to this part of the paper, we believe that the new texts to a large extent go around the concerns raised here.
Section 3a

Response to reviewer 3

Section 3.1 deals with data issues for cryosphere observations. Though very important, this section is clearly too vague. There is neither distinction between ground observations and satellite products/data nor a clear concept what is needed in the future. Without a clear concept the requirement for improving cryosphere observations is weak and not applicable for the reader. What about guidelines/best practices in cryosphere observations? Are there needs for standardization of measurement? Could existing homogenization methods be easily adopted for cryosphere variables? There are clearly more questions to be addressed under this chapter. Consequently, either the authors deal with the subject of data issues in more detail and extensive or they skip it. The current version is without real value.

Response: The original manuscript was indeed not consistent w.r.t. British/American English spelling and we have attempted to be consistent throughout. Also the references are now TC compliant but this is technical work. All three reviewers acknowledge the importance of this section but, the reviewer is right, it is fairly general and to some extent unspecific to the cryosphere. However, we are convinced that data issues are one of the big challenges (and obstacles) in cryospheric science for the reasons explained in the manuscript, and therefore want to maintain this section. We appreciate the valid remarks and have tried to respond to this in the revised section accordingly.
Section 3b
Response to reviewer 3

Under chapter 3.7 (uncertainty) the comparison between different precipitation data sets in Europe as well as the model uncertainty for precipitation from RCMs is shown. This again comes a bit unexpected. Why is this relevant in the context of “changing mountain cryosphere”? Is it useful to discuss this here, with a few sentences only? This needs to be made more clear and better described.

Figure 9: What is the temporal reference of the figure?

Response: The purpose of this section is to make the reader aware of both observations and models uncertainty and therefore we need to take this into account when we validate the model results in regions like mountain where these uncertainties are even larger. Even more important we need to take this into account when we deal with climate change driven signals.

The years are now added in the caption of Figure 9.
My suggestion is to clearly rework the paper and try to make take home message much more evident for the reader. Such take home messages could come from e.g.: - Added value from putting together the information from all different components of the cryosphere (snow, permafrost, glaciers) and try to derive extensive findings, e.g. you could describe how mass balance changes of glaciers fits with changes of summers now at high mountain sites and how this contradicts with winter snow. Which seasonal climate sensitivity was observed for glaciers-, permafrost change and how has it changed with time since the begin of observations. How do snow trends fit to mass balances of glaciers? - Added value from putting the focus on Europe thus interpreting the findings from Scandinavia/Alps/Pyrenees for an European perspective of understanding of climate change. Do we have gaps in the observations with respect to spatial coverage? For a comprehensive view of change of mountain cryosphere I would very much like to see also other time series of changes of the cryosphere such as freshwater ice or ice in caves.

Response: The lead authors of the manuscript have modified the conclusions section to reflect more faithfully – but also succinctly – the information contained in the main body of the text. To our knowledge, every effort has been made to complete the list of references.
The European mountain cryosphere: A review of its current state, trends and future challenges

Martin Beniston\(^{1,2}\), Daniel Farinotti\(^{3,4}\), Markus Stoffel\(^{1,5}\), Liss M. Andreassen\(^{6}\), Erika Coppola\(^{7}\), Nicolas Eckert\(^{8}\), Adriano Fantini\(^{7}\), Florie Giacoma\(^{9}\), Christian Hauck\(^{10}\), Matthias Huss\(^{10}\), Hendrik Huwald\(^{11}\), Michael Lehning\(^{11,12}\), Juan-Ignacio López-Moreno\(^{13}\), Jan Magnusson\(^{6}\), Christoph Marty\(^{12}\), Enrique Moran-Tejéda\(^{14}\), Samuel Morin\(^{15}\), Mohammed Naaim\(^{8}\), Antonello Provenzale\(^{16}\), Antoine Rabatel\(^{17}\), Delphine Six\(^{17}\), Johann Stötter\(^{18}\), Ulrich Strasser\(^{18}\), Silvia Terzago\(^{19}\), Christian Vincent\(^{17}\)

\(^{1}\)Institute for Environmental Sciences, The University of Geneva, Switzerland
\(^{2}\)Department of Physics, The University of Geneva, Switzerland
\(^{3}\)Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
\(^{4}\)Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
\(^{5}\)Department of Earth and Environmental Sciences, The University of Geneva, Switzerland
\(^{6}\)Norwegian Water Resources and Energy Directorate, Oslo, Norway
\(^{7}\)Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
\(^{8}\)Inst. National de Rech. sur les Technologies pour l’Environnement et l’Agriculture (IRSTEIA), Saint Martin d’Hères, France
\(^{9}\)Université de Haute Alsace, Mulhouse, France
\(^{10}\)University of Fribourg, Department of Geosciences, Fribourg, Switzerland
\(^{11}\)Ecole Polytechnique Fédérale de Lausanne, Laboratory for Cryospheric Sciences, Lausanne, Switzerland
\(^{12}\)Swiss Federal Institute for Avalanche Research (SLF), Davos, Switzerland
\(^{13}\)Institute for Pyrenean Ecology (IPE-CSIC), Zaragoza, Spain
\(^{14}\)University of the Balearic Islands, Palma-de-Mallorca, Spain
\(^{15}\)Météo France, Centre d’Etudes de la Neige, Saint Martin d’Hères, France
\(^{16}\)CNR, Institute of Geosciences and Earth Resources, Pisa, Italy
\(^{17}\)University of Grenoble, Laboratory of Glaciology, Saint Martin d’Hères, France
\(^{18}\)University of Innsbruck, Institute of Geography, Innsbruck, Austria
\(^{19}\)CNR, Institute of Atmospheric Sciences and Climate (ISAC-CNR), Turin, Italy

Correspondence to: Martin Beniston (Martin.Beniston@unige.ch)

Abstract. The mountain cryosphere is recognized to have important impacts on a range of environmental processes. This paper reviews current knowledge on snow, glacier, and permafrost processes, as well as their past, current and future evolution in mountain regions in mainland Europe. We provide a comprehensive assessment of the current state of cryosphere research in Europe and point to the different domains requiring further research to improve our understanding of climate-cryosphere interactions, cryosphere controls on physical and biological mountain systems, as well as related impacts.
We highlight advances in the modeling of the cryosphere, and identify inherent uncertainties in our capability of projecting changes in the context of a warming global climate.

5 1 Introduction

Ongoing climate change and the importance of its anthropogenic component have gained wide recognition (IPCC, 2013). Some regions are likely to be more vulnerable to a changing climate than others, to both the expected physical changes and the consequences for ways of life. Mountains are one such system particularly subject to rapid and sustained environmental changes (Gobiet et al., 2014), and the cryosphere is the physical compartment that demonstrates exhibits the most prominent and visible changes. Changes in mountain snow, glaciers, and permafrost, moreover, have resulted in significant downstream impacts in terms of the quantity, seasonality, and quality of water (Beniston et al., 2011). This is particularly true for areas where snow- and ice-melt represent a large component fraction of streamflow. Countless studies have reported glacier retreat, permafrost warming, and snowfall decrease across mountain regions in Europe and elsewhere, with implications for streamflow regimes, water availability, or natural hazards. These can in turn negatively impact hydropower, agriculture, forestry, tourism or aquatic ecosystems. As a consequence, downstream communities will also be under pressure. Both political and scientific programs are calling for better preparedness, and for the development of strategies aimed at averting conflicts of interest that can arise, for example, between economic goals and environmental protection (Beniston et al., 2014).

In the following, we provide an overview of the current knowledge on European mountain permafrost, ice, and snow, and the observed changes in these elements of the cryosphere. We focus on mainland Europe, in particular the European Alps and Scandinavia, but also address the Pyrenees and other mid-latitude European mountains undergoing large and rapid change. An assessment of the challenges that need to be addressed in cryosphere research is provided, and we identify areas where further progress is required to improve our understanding of climate-cryosphere interactions. We argue that such improved understanding is the key for better predicting changes and impacts of a cryosphere responding to rapidly changing climatic conditions, and for appropriate adaptation measures to be developed. The discussions that will follow reflect the current opinions of a body of scientists that focused on a number of issues at a conference held in Switzerland in 2016. We do not claim that all aspects of cryosphere sciences are exhaustively covered, nor are all the possible elements of the cryosphere discussed (e.g., lake ice; ice in caves, etc.). However, we do believe that the elements that appear in the following text do represent much of current scientific preoccupations on this major component of mountain environments.
2. Current and future trends in European mountain cryosphere and their impacts

2.1 Changes in snow

Snow is an important component of the hydrology, but affects also largely other cryospheric components, i.e., glaciers (through the mass balance) and permafrost (through its thermal insulation properties and melt water input). It also plays a key role for sustaining ecological and socio-economic systems in European mountains and also, quite often, in downstream lowland regions. Moreover, snow is the most important interface between the atmosphere and the ground, also influencing the other components of the cryosphere. The extreme spatiotemporal variability remains one of the key factors of uncertainty concerning the impacts of climate change on the cryosphere. Ongoing climatic change is significantly affecting the snow cover through different processes. Snow observations are thus important for understanding these processes, and for providing more reliable assessments of future changes.

2.1.1 Observed changes in snow cover

Most studies show negative trends in snow depth and snow duration over the past decades. The negative trends are well documented in the Alps owing to the abundance of long-term observations. The changes are typically elevation dependent, with more (less) pronounced changes at low (high) elevations (Marty, 2008; Durand et al., 2009; Terzago et al., 2013). As Fig. 1 demonstrates, the spring snow water equivalent (SWE) is clearly decreasing in the Alps (Bocchiola and Diolaiuti, 2010; Marty et al., 2017) as well as at low elevations in Norway (Skaugen et al., 2012). Only in the higher and colder regions of the Fenno-Scandinavian mountains, do long-term trends in snow depth and SWE exhibit positive trends. However, in recent decades in these regions too (Johansson et al., 2011; Skaugen et al., 2012; Dyrrdal et al., 2013; Kivinen and Rasmus, 2015).

In the Pyrenees, a significant reduction of the snowpack is reported after the 1950s (López-Moreno et al., 2007). In other European mountains, observations are less abundant, but declines in snowpack for mountains in Romania (Birsan and Dumitrescu, 2014; Micu, 2009), Bulgaria (Brown and Petkova, 2007), Poland (Falarz, 2008), and Croatia (Gajić-Čapka, 2011) are reported.

The observed changes in snow depth and snow duration are mainly caused by a shift from solid to liquid precipitation (Serquet et al., 2011; Nikolova et al., 2013) and by more frequent and more intense melt conditions (Klein et al., 2016), both resulting from higher winter and spring temperatures. In addition to a general warming trend, large-scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO) have been shown to influence the snow cover in Europe (Henderson and Leathers, 2010; Bednorz, 2011; Skaugen et al., 2012; Birsan and Dumitrescu, 2014; Buisan et al., 2015). For the Alps, 50% of the snowpack variability seems to be related to the establishment of blocking patterns over Europe, although in this case the correlation between the annual snowpack variability and the NAO is small and limited to low elevations (Scherrer and Appenzeller, 2006; Durand et al., 2009). The NAO influence can be detected at higher elevations through a ‘cascade’ of processes that include the NAO influence on pressure fields, and the influence of...
pressure fields on precipitation. Together with temperature, this determines snowfall. In recent decades, this cascade of consequences has led to an increased number of winter days with warm and dry conditions, which is unfavorable for snow accumulation (Beniston et al., 2011b). Moreover, the Atlantic Multi-decadal Oscillation (AMO), which is a natural periodic fluctuation of Northern Atlantic sea surface temperature, affects the low-frequency variability of Alpine spring snowfall (Zampieri et al. 2013) and therefore also contributes to the described decline in snow duration.

The observed changes in snow amounts are often abrupt in time, as a result of the interplay between cold temperatures and precipitation, both influenced by large-scale weather patterns. Several studies have reported a step-like change occurring in the late 1980s for snow depth (Marty, 2008; Durand et al., 2009; Valt and Cianfarrà, 2010) and, for snow-covered areas of the Northern Hemisphere (Choi et al., 2010), but also for other biophysical systems (Reid et al., 2016). This development is mostly the result of winter temperatures that have not risen further, neither in large areas in the Northern Hemisphere (Mori et al. 2014) nor in the Swiss Alps (Scherr et al., 2013). Atmospheric internal variability (Li et al., 2015), as well as shrinking sea-ice extents (Mori et al. 2014) have been invoked as possible explanations. Therefore, it is not surprising that an analysis of the As a result, monthly mean (Dec-Apr) snow covered area in the Alps demonstrated has not clear decreased significantly since the late 1980’s (Hüsl et al., 2014).

Studies analyzing high-magnitude snowfall and maximal winter snow depths are rare, but there are indications that extreme snow depths have decreased in Europe (Blanchet et al., 2009; Kunkel et al., 2016), with the exception of higher and colder sites in Norway (Dyrrdal et al., 2013). The decreasing pattern for extreme snow fall rates is less clear than for extreme snow depth, except for low elevations where the influence of increasing temperatures is predominant (Marty and Blanchet, 2012). In addition, there exist few studies related to past changes in snow avalanche activity. Over the last decades, observations indicate that (a) the number of days with prerequisites for avalanche in forests decreased (Teich et al., 2012), (b) the proportion of wet snow avalanches increased (Pielmeier et al., 2013), and (c) the runout altitude of large avalanches retreated upslope (Eckert et al., 2010, 2013; Corona et al., 2013) as a direct consequence of changes in snow cover characteristics (Castebrunet et al., 2012).

2.1.2 Future changes in snow cover

The projected increase in temperature for coming decades is accompanied by high uncertainties in winter precipitation changes. Ensemble means show no clear precipitation change until about the 2050s, but slightly increasing winter precipitation thereafter. Projected changes in snow cover are thus highly dependent on the considered greenhouse gas emission scenario and the addressed period. Under a SRES A2 scenario, regional climate model simulations show a dramatic decrease in both the snow cover duration and SWE for Europe by the end of the 21st century (Jylhä et al., 2008).
For the Alps and at an elevation of 1500 m a.s.l., recent simulations project a reduction in SWE of 80-90% by the end of the century (Rousselot et al., 2012; Steger et al., 2013; Schmucki et al., 2015). The snow season at that altitude is projected to start 2-4 weeks later and to end 5-10 weeks earlier than today (1992-2012), which is roughly equivalent to an elevation shift of about 700 m (Marty et al., 2016). For elevations above 3000 m a.s.l., even the largest projected precipitation increase results in a decline in SWE of at least 10% by the end of the century. Future climate will most probably not see a permanent snow cover during summer even at the highest elevations, with obvious implications for glacier evolution (Magnusson et al., 2010; Bavay et al., 2013) and thermal conditions of the ground (e.g. Magnin et al. 2017, Draebing et al. 2017, Marmy et al. 2016, Draebing et al., 2017).

Projections for Scandinavia show clear decreases for snow amount and duration for all latitudes. An exception is given by the highest mountains in the north, where strongly increasing precipitation seems to partly compensate for temperature rise, thus resulting in marginal changes only (Räisänen and Eklund, 2012). Simulations for the Pyrenees indicate declines of the snow cover similar to those found for the Alps (López-Moreno et al., 2009). Again, the dependency on future greenhouse gas emissions has to be noted: Under a high emission scenario (RCP8.5), SWE decreases by 78% at the end of the 21st century at 1500 m a.s.l. elevation, whereas a lower emission scenario (RCP6.0) shows a decline of 44%.

Regarding extremes, model results suggest a smaller reduction in daily maximum snowfalls than in mean snowfalls over many regions of the Northern Hemisphere by the end of the 21st century (O’Gorman, 2014). An investigation for the Pyrenees (López-Moreno et al., 2011), however, finds a marked decrease in the frequency and intensity of heavy snowfall events below 1000 m a.s.l., but no change in heavier snowfalls for higher elevations. The ongoing evolution towards more wet than dry snow avalanches will continue, although the overall avalanche activity will decrease, especially in spring and at low elevations (Martin et al., 2001; Castebrunet et al., 2014). In contrast, an increase in avalanche activity is expected in winter at high elevations due to more favorable conditions for wet-snow avalanches earlier in the season (Castebrunet et al., 2014). The reduction of the snow season length will have large consequences for winter tourism (Uhlmann et al., 2008; Steiger and Abegg, 2013; Schmuki et al., 2015b), water management (Laghari et al., 2012; Hill-Clarvis et al., 2014; Gaudard et al., 2014; Köplin et al., 2014) and ecology (Hu et al., 2010; Martz et al., 2013). However, there are also other implications than just Decreasing snow duration and shrinking snow depths are not the only changes with implications, especially in Fenno-Scandinavian mountains regions, the increasing number of hard (icy) snow layers due higher temperatures (Johansson et al., 2011) can have a significant effect on the life of plants and animals in these regions.
a. 2.2 Changes in glaciers

Mountain glaciers are recognized as a key indicator of rapid and global climate change. They are important for water resources as they modulate the water cycle at different temporal and spatial scales, affecting irrigation, hydropower production, and tourism. Evaluating the retreat or complete disappearance of mountain glaciers in response to climate change is important to estimate impacts on water resources (e.g. Kaser et al., 2010; Pellicciotti et al., 2014), and to anticipate natural hazards related to glacier retreat, e.g. ice avalanches or the formation of new lakes (Frey et al., 2010; Gilbert et al., 2012; Faillettaz et al., 2015; Haeberli et al., 2016), with the latter obviously also offering opportunities in terms of (temporal) water storage.

Observed changes in glaciers

Since 1894, glacier observations became internationally coordinated and continental Europe was the leader of this remarkable development. Gathering the rich and unique records of observations in earlier centuries, including paintings and photography (Zumbühl et al., 2008), length change measurements, direct surface mass balance observations, repeated mapping of surface elevation or remote sensing observations of changes in surface state (e.g. snowline, albedo, debris cover), allowed conducting integrative studies to assess the surface geometry, ice thickness and volume changes of various glaciers. Comprehensive data sets show that glaciers in mainland Europe cover an area of nearly 5,000 km² (Table 1) and have an estimated volume of almost 400 km³ (Huss and Farinotti, 2012; Andreassen et al., 2015). Based on historical archives such as paintings and photography (Zumbühl et al., 2008), it is seen that glaciers have undergone substantial mass loss throughout the 20th century (Fig. 2) and the pace of mass loss has been increasing (Zemp et al., 2015). A loss of 49% in the ice volume was estimated for the European Alps for the period 1900-2011 (Huss, 2012). Repeated inventories have shown a reduction in glacier area of 11% in Norway between 1960 and the 2000s (Winsvold et al., 2014), and 28% in Switzerland between 1973 and 2010 (Fischer et al., 2014). Periods with positive surface mass balance have occurred intermittently, notably from the 1960s to the mid-1980s in the Alps, and in the 1990s and 2000s for maritime glaciers in Norway (Zemp et al., 2015). Glacier area loss has led to the disintegration of many glaciers, which has also affecting the observational network, which should be replaced timely by larger or higher-reaching glaciers (e.g., Zemp et al., 2009; Carturan et al., 2016).

<table>
<thead>
<tr>
<th>Country</th>
<th>Area (km²)</th>
<th>Volume (km³)</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway</td>
<td>2692</td>
<td>271</td>
<td>1999-2006</td>
<td>Andreassen et al., 2012b</td>
</tr>
<tr>
<td>Sweden</td>
<td>262</td>
<td>12</td>
<td>2002</td>
<td>Brown and Hansson, 2004</td>
</tr>
<tr>
<td>Switzerland</td>
<td>943</td>
<td>67</td>
<td>2008-2011</td>
<td>Fischer et al., 2014</td>
</tr>
<tr>
<td>Austria</td>
<td>415</td>
<td>17</td>
<td>2006</td>
<td>Abermann et al., 2009</td>
</tr>
<tr>
<td>Italy</td>
<td>370</td>
<td>18</td>
<td>2005-2011</td>
<td>Smiraglia and Diolaiuti, 2015</td>
</tr>
</tbody>
</table>
Table 1: Distribution of glacier surface area and estimated ice volume in continental Europe and mainland Scandinavia. Years of reference and respective publications are given for glacier area. Ice volume estimates refer to 2003 (Huss and Farinotti, 2012) for continental Europe and Sweden, and to 1999-2006 for Norway (Andreassen et al., 2015). Uncertainties in ice volume are in the order of 10-20%.

<table>
<thead>
<tr>
<th>Location</th>
<th>Area (km²)</th>
<th>Volume (m³)</th>
<th>Years</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>France (Alps)</td>
<td>275</td>
<td>13</td>
<td>2006-2009</td>
<td>Gardent et al., 2014</td>
</tr>
<tr>
<td>France-Spain</td>
<td>3</td>
<td><1</td>
<td>2011</td>
<td>Marti et al., 2015</td>
</tr>
<tr>
<td>Pyrenees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>4960</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The glacier retreat during the 20th century has mainly been attributed mainly to changes in atmospheric energy fluxes, which in turn translate to air temperature in a non-linear manner. However, good correlations between air temperature and melt exist, making long-term air temperature time series the favorite option to explain 20th century glacier retreat (Haeberli and Beniston, 1998). It has also been shown that changes in solar radiation could partly explain high melt rates in the 1940s (Huss et al., 2009). Several studies used various calibrated temperature-index methods to simulate snow and ice melt responses to atmospheric forcing (Braithwaite and Olesen, 1989; Pellicciotti et al., 2005). However, the relevance of these approaches over multi-decadal time periods is hardly has been little assessed. This is due to both the lack of long-term in-situ meteorological measurements available close to the study sites and the temporal evolution of the melt sensitivity to temperature (Huss et al., 2009; Gabbi et al., 2014; Réveillet et al., 2017). Changes in climate variables affecting glacier behavior are driven by different factors, ranging from large-scale synoptic weather patterns to regional and local effects enhanced by topography. The latter influences the distribution of precipitation, solar radiation, and wind, among others. Several studies have shown that the NAO influences glacier surface mass balance, in particular in southwestern Norway. The glacier advances in Scandinavia during 1989-1995 are attributed to increased winter precipitation linked to the positive NAO index phase during this period (Rasmussen and Conway, 2005). In contrast, in the European Alps, the relationship between the NAO and glacier surface mass balance is less pronounced (Marzeion and Nesje, 2012; Thibert et al., 2013).

The glacier evolution during the 20th century also highlights the importance of the surface albedo feedback, as albedo governs the shortwave radiation budget at the glacier surface, which is the dominant energy source for melting. Snow and ice ablation sensitivities to albedo have been generally assessed using physical energy-balance considerations (Six and Vincent, 2014) or degree-day approaches (e.g., Engelhardt et al., 2015). Oerlemans et al. (2009) and Gabbi et al. (2015) investigated the influence of accumulation of dust or black carbon on melt rates on Swiss glaciers in the last decades, which revealed increasing annual melt rate by 15-19% compared to pure snow. Monitoring, reconstructing, or modeling the surface albedo of glaciers is challenging (Brock et al., 2000) as its spatial and temporal evolution is linked to changes in surface properties (e.g., snow grain size) and to the deposition of impurities on the ice. Albedo changes are also determined by snow deposition...
(amount and spatial distribution), making the annual surface mass balance highly sensitive to snow accumulation (Réveillet et al., 2017). Properly quantifying the amount and distribution of accumulation over glaciers is therefore a key to better assess the glacier surface mass balance sensitivity to changes in climate, and to simulate its future evolution (Sold et al., 2013).

Due to a large ice mass loss during the 20th century, the alpine glacier dynamics have been strongly affected, leading to a substantial decrease in ice flow velocities (e.g., Berthier and Vincent, 2012). However, glacier dynamics are influenced by numerous variables such as mass change and basal hydrology for temperate glaciers, and by ice temperature changes for cold glaciers.

Regarding temperate glaciers, their ice dynamics are mainly driven by the thickness changes and the basal hydrological system, which in turn affects basal sliding. On the one hand, the large decrease in ice thicknesses over the last three decades has led to a strong reduction in ice flow velocities. On the other hand, increased water pressures, on the other hand, reduce the frictional drag and thus increase the sliding rate. Depending on the subglacial drainage networks evolving during the melt season, the sliding velocities are low if the water under glaciers drains through channels at low pressure and, conversely, it is high if the water drains through interconnected cavities (Röthlisberger, 1972). Although changes in the seasonal ice flow velocities are driven by subglacial hydrology, it seems that, at the annual to pluriannual time scales, the changes in ice flow velocity do not depend on changes in subglacial water runoff (Vincent and Moreau, 2016). However, a few temperate alpine glaciers have shown large acceleration due to a change in subglacial hydrology, e.g., the Belvedere glacier in Italy (Haeberli et al., 2002), even if the mechanisms of this surge-type movement remain unclear. In some rare cases, the reduction of the efficiency of the drainage network followed by a pulse of subglacial water triggered a catastrophic break-off event as in the case of Allalingletscher in 1965 and 2000 (Faillettaz et al., 2015).

Several studies of cold glaciers located at very high altitude in the European Alps revealed that englacial temperatures have strongly increased over the last three decades due to rising air temperatures and latent heat released by surface meltwater refreezing within the glacier (Lüthi and Funk, 2000; Gilbert et al., 2014). A progressive warming of the ice is expected to occur and propagate downstream. As a result, changes of basal conditions could have large consequences on the stability of overhanging glaciers (Gilbert et al., 2014). Such changes in basal conditions are understood to be responsible for, as it happened during the complete break-off of Altselsgletscher in 1895, for example (Faillettaz et al., 2015).

The future of European glaciers
Estimates of future glacier changes in the European Alps and Scandinavia have been motivated by research questions regarding the climate change sensitivity of glaciers but also by applied studies related to the consequences of declining ice volume for future water resources. Over the last two decades, various studies on future glacier change in Europe have been published that can be broadly classified into site-specific (e.g., Giesen and Oerlemans, 2010) and regional studies (e.g., Salzmann et al., 2012).

Projections of future glacier change necessarily involve a model for the surface mass balance response of glaciers, and a model for the response of ice flow dynamics. The applied models vary in complexity and ranging from simple degree-day models (e.g., Braithwaite and Zhang, 1999; Radic and Hock; 2006) to complete surface energy balance models (e.g., Gerbaux et al., 2005), and from simple parameterizations of glacier geometry change (Zemp et al., 2006; Huss et al., 2010; Linsbauer et al., 2013) to over flowline models (e.g., Oerlemans, 1997; Oerlemans et al., 1998) to complete three-dimensional ice flow models solving the full-Stokes equations (Le Meur et al., 2004; Jouvet et al., 2011; Zekollari et al., 2014). All models driven by future changes in climate forcing given provided by regional climate models indicate a substantial reduction of glacier ice volume in the European Alps and Scandinavia by the end of the century. Small glaciers are likely to completely disappear (e.g., Linsbauer et al., 2013), and even large valley glaciers, such as Great Aletschgletscher, Rhonegletscher, Vadet da Morteratsch (Switzerland), or ice caps as Hardangerjøkulen and Spørteggbreen (Norway) are expected to lose up to 90% of their current volume by 2100 compared to today (Jouvet et al., 2009, Jouvet et al., 2011; Giesen and Oerlemans, 2010; Farinotti et al., 2012; Laumann and Nesje, 2014; Zekollari et al., 2014; Åkesson et al., 2017). Many glacier tongues will disappear, including for example the one from such as the famous outlet glacier Briksdalsbreen, the famous outlet glacier of Jostedalsbreen, the largest ice cap in mainland Europe (Laumann and Nesje, 2009). At the scale of mountain-range scale model studies relying on different approaches and medium-range emission scenarios consistently predict, over the 21st century, relative volume losses of 76-97% for the European Alps, and of 64-81% for Scandinavia over the 21st century based on GCMs forced with a medium-range emission scenario (Marzeion et al., 2012; Radic et al., 2014; Huss and Hock, 2015).

Even with strong efforts to reduce CO2-emissions and to stabilize global warming at around +2°C as recommended by the Paris COP-21 climate accord, ice volume losses of around 80% are expected for the European Alps (Huss, 2012; Salzmann et al., 2012). Mountains glaciers in Europe are already strongly imbalanced out-of-balance with present climatic conditions, and substantial mass losses are already committed (e.g., Andreassen et al, 2012a; Mernild et al, 2013). Due to their high sensitivity to climate change and limited altitudinal extent, many European glaciers are unable to reach a new equilibrium with climate even if air temperatures increase is are stabilized towards 2100 by the end of this century. Furthermore, the present-day ice caps in Norway, that contribute to a large part of the total ice volume in both Norway, and thus–Europe (Table 1), are highly sensitive to the effect of hypsometry on the mass balance–altitude feedback due to their hypsometry and large ice thicknesses. Model experiments suggest that Hardangerjøkulen will not regrow with its present mass balance...
regime once it has disappeared (Åkesson, 2017). However, uncertainties in projections of future glacier evolution are still considerable and thorough research is required to improvements are required in both the quality of the input data sets and the physical basis upon which of glaciological models are built (see Section 3.2).

2.3 Changes in permafrost

Permafrost is defined as lithospheric material with temperatures continuously below 0°C, and covers approximately \(20 \times 10^6\) million km\(^2\) of the Earth, with a fourth of it being located in mountainous terrain (Gruber, 2012). Although the understanding of the thermal state of permafrost has increased significantly within the recent past, knowledge gaps still exist regarding the volume of ice stored in European permafrost, its potential impact on future water resources, and its effect on slope stability, including processes leading to permafrost degradation and talik formation (Harris et al., 2009; Etzelmüller, 2013; Haeberli, 2013).

2.3.1 Observed changes in permafrost

Permafrost borehole temperatures are monitored in many European mountain ranges (GTN-P database, Biskaborn et al., 2015), several of the sites being accompanied by meteorological stations and ground surface temperature measurements (Gisnaas et al., 2014; Staub et al., 2016). However, as mountain permafrost is usually invisible from the surface, various indirect methods need to be employed to detect, characterize and monitor permafrost occurrences. These methods include surface-based geophysical measurements to determine the physical properties of the subsurface, including water and ice content distributions (Kneisel et al., 2008; Hauck, 2013), and geodetic and kinematic measurements to detect subsidence, creep and slope instabilities (Kääb, 2008; Lugon and Stoffel, 2010; Kaufmann, 2012; Kenner et al., 2014; Arenson et al., 2016).

The longest time series of borehole temperatures in Europe started in 1987 at a rock glacier in the Swiss Alps (Haeberli et al., 1998; Fig. 3), a period that is much shorter as compared to other cryospheric components such as snow (cf section 2.1) and glaciers (cf section 2.2). The past evolution of permafrost at the centennial time-scales can to some extent be reconstructed from temperature profiles in deep permafrost boreholes (e.g., Isaksen et al. 2007), indicating at decadal warming rates at the permafrost table on the order of 0.04°–0.07°C for Northern Scandinavia and Svalbard. Permafrost has been warming globally since the beginning of the measurements (Romanovsky et al., 2010; Noetzli et al., 2016; Fig 3). This warming was accompanied by an increase of the thickness of the seasonal thaw layer (active layer thickness; Noetzli et al., 2016). The considerable year-to-year variability can be linked to variations in the snow cover, as a reduction in snow cover thickness reduces thermal insulation. Latent heat effects associated with thawing mask the recent warming trend for “warm” permafrost sites (temperatures close to the freezing point), which is otherwise clearly visible in cold permafrost (Fig. 3).
The increasing trend in permafrost temperatures and especially the deepening of the active layer has been hypothesized to lead to an increased frequency of slope instabilities in mountain ranges, including rock falls and debris flows (Gruber and Haeberli, 2009; Harris et al., 2009; Bommer et al., 2010; Stoffel, 2010a,b; Fischer et al., 2012; Ettelmüller, 2013; Stoffel et al., 2014a,b; see also Section 3f). The disposition conditions and triggering mechanisms of slope instabilities can be diverse, and depend on subsurface material (e.g., unconsolidated sediments versus bedrock), its characteristics (fractures and fissures, ice and water content, slope angle, geological layering), and changes of these properties with time (Hasler et al., 2012; Krautblatter et al., 2012; Ravanel et al., 2013; Phillips et al., 2016). Water infiltration into newly thawed parts of permafrost is often mentioned as a possible triggering mechanism (Hasler et al., 2012; Schneuwly-Bollschweiler and Stoffel, 2012), but only few observational data are available. On the other hand, permafrost affects hydrology through interactions with the snow cover, and by influencing infiltration, and-subsurface runoff and drainage (Arenson et al., 2010; Scherler et al., 2010; Langston et al., 2011; Zhou et al., 2015). Permafrost bodies and especially rock glaciers are also water reservoirs affecting runoff regimes and water availability. Data on the ice volume stored in such features remain scarce. To date, hydrologically oriented permafrost studies have been based on remote sensing and meteorological data for larger areas, or have had a locally constrained scope such as the Andes (Schrott, 1996; Brenning, 2005; Arenson and Jacob, 2010; Rangecroft et al., 2015); the Sierra Nevada (Millar et al., 2013); and Central Asia (Sorg et al., 2015; Gao et al., 2016). To our knowledge, no systematic studies exist regarding permafrost-hydrology interactions for European mountain ranges.

2.3.3 Changes in rock glacier flow velocities and ice volume

Because of its complexity, permafrost evolution cannot be assessed by thermal monitoring alone. Kinematic and geophysical techniques are required for detailed process studies. Kinematic methods are used to monitor moving permafrost bodies (e.g., rock glaciers) and surface geometry changes. Hereby, methods based on remote sensing allow for kinematic analyses over large scales (Barboux et al., 2014, 2015; Necsoiu et al., 2016) and the compilation of rock glacier inventories (e.g., Schmid et al., 2015), whereas ground-based and airborne kinematic methods focus on localized regions and on the detection of permafrost degradation over longer time-scales (Kaufmann, 2012; Klug et al., 2012; Barboux et al., 2014; Müller et al., 2014, Kenner et al., 2014, 2016; Wirz et al., 2014, 2016). Long-term monitoring of creeping permafrost bodies show an acceleration in recent years, possibly related to increasing ground temperatures and higher internal water content (Delaloye et al., 2008; Ikeda et al., 2008; Permos, 2016; Scotti et al. 2016; Hartl et al. 2016). The above-mentioned above-kinematic monitoring methods cannot, however, be used for monitoring of permafrost bodies without movement or surface deformation (e.g., sediments with medium to low ice contents, rock plateaus, gentle rock slopes etc.). Remote sensing has so far not enabled thermal changes in permafrost to be assessed.
Geophysical methods can detect permafrost, and characterize its subsurface ice and water contents (Kneisel et al., 2008; Hauck, 2013). They also provide structural information such as active-layer and bedrock depths. In recent years, repeated geoelectrical surveys have been applied to determine ice and water content changes, thus complementing temperature monitoring in boreholes (Hilbich et al., 2008a; Pellet et al., 2016). Results from this Electrical Resistivity Tomography (ERT) monitoring show that permafrost thaw in mountainous terrain is often accompanied by a drying of the subsurface, as the water from the melted permafrost often leaves the system downslope, and is not always substituted in the following summer (Hilbich et al., 2008a; Isaksen et al., 2011). A 15-year ERT time series from Schilthorn, Swiss Alps, shows for example a clear decreasing trend of electrical resistivity, corresponding to ice melt, throughout the entire profile below the active layer (Fig. 4). The corresponding temperature at 10 m depth (Figure 4a) is at the freezing point, and shows no clear trend. ERT is increasingly used in operational permafrost monitoring networks to determine long-term changes in permafrost ice content (Hilbich et al., 2008b, 2011; Supper et al., 2014; Doetsch et al., 2015; Pogliotti et al., 2015).

2.3.2 Future permafrost evolution

Physically-based models of varying complexity are employed for process studies of permafrost (for a review see Riseborough et al., 2008; Etzelmüller, 2013) and specifically for the analysis of future permafrost evolution. These models should not be confused with permafrost distribution models (Boeckli et al., 2012, Gisnaas et al. 2016, Deluigi et al. 2017), which are statistical and often based on rock glacier inventories and/or topo-climatic variables such as potential incoming solar radiation and mean annual air temperature. Physically-based site-level models are used in combination with Regional Climate Models (RCM) for studies of long-term permafrost evolution (Farbrot et al., 2013; Scherler et al., 2013; Westermann et al., 2013; Marmy et al., 2016), similar to land-surface schemes used for hemispheric permafrost modeling (e.g., Ekici et al., 2015; Chadburn et al., 2015; Peng et al., 2016). Physically-based models are also used to explain the existence of low-altitude permafrost occurrences (e.g., Wicky and Hauck 2016) and analyse the dominant processes for the future evolution of specific permafrost occurrences in the European mountains (Scherler et al., 2014; Fiddes et al., 2015; Zhou et al., 2015; Haberkorn et al., 2017; Lüthi et al. 2017). Simulations for different mountain ranges in Europe suggest an overall permafrost warming and a deepening of the active layer until the end of the century (see Fig. 5 for four examples from the Swiss Alps; similar simulations from Scandinavia are found in Hipp et al., 2012; Westermann et al., 2013, 2015; Farbrot et al., 2013).

The projected increase in permafrost temperatures is mainly due to the projected increase in air temperatures, which also causes the snow cover duration to decrease, and thereby reducing the thermal insulation effect, consistent with the snow cover projections described in section 2.1 (Scherler et al. 2013, Marmy et al. 2016). However, in spite of similar trends in the mentioned RCM-driven permafrost studies, comprehensive regional scale maps or trend values for current and projected permafrost changes in Europe are not available to date - partly, because there is an insufficient number of borehole data available, but mainly because of the large heterogeneity of the
permafrost in European mountain ranges, which depends strongly on surface and subsurface characteristics (e.g., fractures/unfractured rock, fine/coarse-grained sediments, porosity, etc), microclimatic factors (snow cover, energy balance of the whole atmosphere/active layer system, convection in the active layer, etc.) in addition to classical topo-climatic factors (elevation, aspect, slope angle).

Finally, it should be noted that, in contrast to glacier melting, permafrost thawing is an extremely slow process (due to the slow downward propagation of a thermal signal to larger depths, and additional latent heat effects). As permafrost in European mountains is often as thick as 100 m, a complete degradation is therefore unlikely within the next century.

2.4 Changes in meltwater hydrology

In spring, summer, and autumn, seasonal snow and glacier ice are released as meltwater into the headwaters of the alpine water systems. Because of the seasonal release of previously stored water as snow and ice and the significant surplus of precipitation compared to the forelands, mountains have often been referred to as “water towers” (Mountain Agenda, 1998; Vivirolí et al., 2007). The meltwater contribution to streamflow often is important for millions of people downstream (Kaser et al., 2010). The Alps, in particular, are the water source for important rivers that flow into the North Sea (Rhine), the Black Sea (Danube) and the Mediterranean Sea (Rhone and Po); a comprehensive overview of the major alpine water systems is given in EEA (2009).

The most important seasonal runoff signal in the Alps is the melt of snow (Beniston, 2012). This is because the precipitation distribution is fairly even throughout the year, and because the amount of water retained in and released from reservoirs and lakes is only a small fraction of the total (Schaeflí et al., 2007; López-Moreno et al., 2014). In general, temperature-induced changes in streamflow (rain-to-snow fraction, seasonal shift of snowmelt, glacier runoff contribution) can be regarded as much generally better understood than the ones caused by changing precipitation (Blaschke et al., 2011).

Nevertheless, understanding long-term trends in runoff require an accurate estimate of the amount and distribution of snow accumulation during winter (Magnusson et al., 2011; Huss et al., 2014). The response of snowmelt to changes in temperature and precipitation is influenced by the complex interactions between climatic conditions, topography and wind redistribution of snow (e.g., López-Moreno et al., 2012; Lafaysse et al., 2014).

Several national assessments have addressed the hydrologic changes in alpine river water systems, highlighting important regional differences (e.g., FOEN, 2012; APCC, 2014); these review reports contain a wealth of specific literature. Regional peculiarities are due to spatial differences in temperature and precipitation changes, although other factors such as local land-use changes or river corrections may play a role as well (EEA, 2004). With respect to the climatic patterns, the main ridge of the European Alps represents an important divide: In the north, streamflows of the winter half-year

[Comment [DF8]: Martin: Was the deletion of these sentences intentional? I'm somewhat surprised that there are two "streamflow" left out from the deletion. I would probably keep the part.]
have generally increased (SGHL/Chy, 2011; APCC, 2014), mainly due to (a) increasing temperatures resulting in an increased fraction of rainfall, a rise in mean snowline elevation, and a reduction of the snow-covered area, as well as (b) a shift of the precipitation maximum from the summer months into winter and spring. South of the main ridge, summer stream flows have decreased due to rising temperatures and associated evapotranspiration losses, and decreasing precipitation (FOEN, 2012).

Compared to snowmelt, the total ice-melt volume from glaciers in the Alps is minor. At sub-annual scales, however, contributions from glacierized surfaces can be significant not only for the headwater catchments close to the glaciers (Hanzer et al., 2016), but also for larger basins with low degrees of glacierization where glacierization volume is small (Huss, 2011). This is particularly true during summer when specific runoff yield from glacierized areas is much higher than from non-glacierized ones (Farinotti et al., 2016). In a warming climate with retreating glaciers this also holds for annual scales, as additional meltwater is released from ice storage that has accumulated over long time periods.

Scenarios of changing stream flows affected by retreating glaciers in a warming climate have been recently conducted in various physically-based, distributed modelling experiments (Weber and Prasch, 2009; Prasch et al., 2011; Hanzer et al., 2017). Figure 6 illustrates future stream flows of a currently highly glacierized catchment (i.e., roughly 35% glacierized surface area) in the Austrian Alps. Even for the moderate IPCC RCP2.6 scenario (IPCC, 2007) which corresponds roughly to the COP-21 “2°C Policy”, the glacier melt contribution to runoff becomes very small by the end of the century. In the second half of the century, summer runoff amounts decrease strongly with simultaneously increasing spring runoffs. While in the RCP2.6 scenario the month of peak runoff remains unchanged, in the RCP4.5 and RCP8.5 scenarios, project the peak to gradually shift from July towards June. Alpine stream flows will hence undergo a significant regime shift from glacial/glacio-nival to nivo-glacial, i.e., the timing of maximum discharge will generally move from the summer months to spring (Beniston, 2003; Jansson et al., 2003; Collins, 2008; Farinotti et al., 2012; Prasch et al., 2011; Hanzer et al., 2017). For the Rofenache, this shift already occurs in the period 2041–2070. For many streams utilized for hydropower generation, this phenomenon can be superimposed by the effects of regulation. The regimes in Fig. 6 indicate that (a) the effect of warming increases after the mid of the century for all scenarios, (b) in each of the choice of climate model combination choice, and (c) the timing of the maximum contribution of ice melt to streamflow – referred to as “peak water” – already has already passed, i.e., the effect of declining glacier area already has become larger than the increasing melt caused by the rising temperatures. This must does not necessarily hold true for other headwater catchments (Hanzer et al. 2017). Until the mid-21st century and for large scales, such as the entire Austrian region, the decrease of annual streamflow is expected to be small.

By 2100, the glaciers in the Alps may lose up to 90% of their current volume (Beniston, 2012; Pellicciotti et al., 2014; Hanzer et al., 2017), and peak discharge will likely to occur 1-2 months earlier in the year (Horton et al., 2006) according...
to carbon-emission scenarios. In Switzerland, a new type of flow regime (called “pluvial de transition,” i.e., transition to pluvial) was introduced to classify such newly emerging runoff patterns (SGHL/CHhy, 2011; FOEN, 2012). Regime shifts have long been recognized and can be interpreted as the prolongation of observed time series, the longest one in the Alps being available since 1808 for the Rhine river. Some investigations, however, show that annual runoff totals may change only little, as the overall change resulting from reductions in snow and ice melt, changing precipitation, and increased evapotranspiration is unclear (SGHL/CHhy, 2011; Prasch et al., 2011). Other studies, instead, highlight the significance of future regime shifts in headwater catchments (Pellicciotti et al. 2014). Obviously, the complex interplay of snow- and ice-melt contribution to discharge in a changing climate, combined with the other processes determining streamflow regime, and their scale dependencies are not yet fully understood. Consensus: There exists a general consensus, however, that only few high-altitude regions of the Alps will continue to have a glacial regime in the long term (FOEN, 2012).

Despite the general trend towards drier summers, a recent review of 21st century climate change in the European Alps found that severe flooding events might become more frequent due to heavy or extended precipitation events in future (Gobiet et al., 2014; Stoffel et al., 2016). Also, the magnitude and frequency of winter and spring floods might increase since, if atmospheric temperatures continue to rise, more frequent rain-on-snow (ROS) events can add to liquid precipitation. However, a cutoff beyond which ROS events will decrease with increasing temperatures is expected when the amount of snow reduces significantly in response to higher temperatures (Beniston and Stoffel, 2016). Concerning droughts in the Alpine region, a clear trend towards increasing occurrence and severity has been highlighted (Gobiet et al., 2014).

Finally, it is known since long that climate change also effects the seasonal duration of lake ice and spring break-up dates (George, 2010), with an overall trend to earlier thawing of one week per century, approximately (Livingstone, 1997). The timing of the break-up is strongly correlated with local and regional surface temperatures, determined to a large extent by synoptic-scale meteorological processes. In many regions, such as, e.g., St. Moritz/Engadin (Switzerland), the lake ice coverage during the winter months is an important landscape feature for touristic use.

2.5 Impacts on downstream water management

Sectors that are directly dependent on alpine headwaters will need to adapt to the changes outlined above. Hereby, different scenarios need to be considered, depending on how governance will cope with water-related conflicts that may arise from changes in water demand (Nelson et al., 2007; Beniston et al., 2011).

2.5.1 Agriculture
Shifts in agricultural production are expected with climate change (Jaggard et al., 2010; Gornall et al., 2010). Most studies conducted in the alpine regions project reduced soil water content as a result of increasing evaporation. This will lead to increased water demand for irrigation (Jasper et al., 2004; Schaldach et al. 2012; Riediger et al. 2014), and will add to the changes in water availability resulting from changing snow and glacier melt (Smith et al., 2014). The effects of more frequent droughts will affect both croplands and grasslands. In Switzerland, the latter cover around 75% of the agricultural land and sustain domestic meat and dairy production (Fuhrer et al., 2006). The majority of crops currently cultivated in the Alps have been shown to be very sensitive to precipitation deficits in the growing season (Fuhrer et al., 2006; Smith et al., 2014). High irrigation demands will thus likely put additional pressure on rivers, especially small ones as they suffer more from inter-annual variability (Smith et al., 2012). Long-term water-management strategies will be important to face these challenges and to ensure that future agricultural water needs can be met (Riediger et al., 2014).

2.5.2 Hydropower

Climate change is a key driver in power markets, as both electricity production and demand are linked to meteorological variables (Apadula et al., 2012). As a consequence of earlier snow melts and reduced water discharge from glaciers, hydropower production is expected to increase in winter and to reduce in summer (Hauenstein, 2005; Kumar et al., 2011). Currently, energy demand is higher in winter than in summer, but this may change as rising summer temperatures increase energy requirements for the cooling of buildings (López-Moreno et al., 2008, 2011; Gaudard and Romerio, 2014). A study conducted for the Mattmark dam in the Swiss Alps and for the Val d’Aosta, Italy (Gaudard et al., 2014) revealed that peak hydropower production has so far not been affected by climate change. This is possibly the result of the large existing reservoir volumes, which are able to offset seasonal changes (Farinotti et al., 2016). Indeed, it has been suggested that no urgent adaptation of the hydropower infrastructure will be required in Switzerland within the next 25 to 30 years (Haunstein, 2005). Reservoir management, however, will become more challenging as a consequence of higher fluctuations in electricity demands linked to the intermittent production of new renewable energy sources (Gaudard and Romerio, 2014). Furthermore, the inter-annual fluctuations in water availability are expected to increase (Gaudard et al., 2014). Run-of-river power plants are expected to be less vulnerable to climate change, as they are usually installed on streamflows with small hydrological fluctuations (Gaudard et al., 2014). Hydropower plants can also be effective in dampening floods (Harrison and Whittington, 2001). Additional safety concerns include the melting of permafrost and the possibility of more frequent heavy rainfall, resulting in more frequent slope instabilities and potential flood waves that may endanger power plants (Peizhen et al., 2001; Schwanghart et al., 2016). Increased sediment loads from deglacierized surfaces may additionally affect power generation, in particular by affecting the wear of infrastructure or the siltation of storage volumes (Beniston, 2003).

2.5.3 Tourism
Increasing temperatures are anticipated to result in shorter skiing seasons and a shift of the snow line to higher elevations (Abegg et al., 2007; Steiger, 2010). This will likely lead to smaller number of visitors and reduced revenues, and thus have important economic impacts on alpine winter tourism. Generation of artificial snow is designed to buffer the impact of interannual variability of snow conditions, and is increasingly considered as an adaptation measure in alpine ski resorts (Uhlmann et al., 2009; Steiger, 2010; Gilaberte et al., 2014; Spandre et al., 2016). In Switzerland, ski slope areas employing artificial snow-making equipment have tripled (from 10 to 33%) from 2000 to 2010 (Putz et al, 2011). In the French Alps, 32% of the ski slope area was equipped with snow-making facilities in 2014, and this proportion is likely to reach 43% by 2020 (Spandre et al., 2015). In Austria, this share is about 60%, mainly due to the lower average elevations of the Austrian ski areas, and in the Italian Alps, almost 100% of the ski areas are equipped (Rixen et al., 2011). Water consumption for tourism in some Swiss municipalities is high compared to other uses. A study focusing on three tourism destinations in Switzerland, for example, found this consumption to be equivalent to 36% of the drinking water consumption (Rixen et al., 2011). Water and energy demands of ski resorts will increase, which may in turn lead to higher prices for consumers (Gilaberte et al., 2014). Also summer mountain resorts could be affected by water shortages in the future, thus calling for improved water management (Roson and Sartori, 2012).

2.6 Examples on the influence of the cryosphere on ecosystem functioning

In high mountains, the interaction between the biotic and abiotic ecosystems components is especially strong. The demanding conditions of high elevations control the physical environment of living beings, which in turn can modify the environment to make it more suitable for their own survival. Increasing temperatures, for example, induce an upward and poleward shift of flora and fauna (Parmesan, 2006). Such modifications can affect mountain biodiversity, especially for endemic species, and species with limited dispersal capacity (Viterbi et al., 2013). This is now a huge field of research, where international projects such as GLORIA (http://www.gloria.ac.at/) and the Global Network for Observations and information in Mountain Environments of the Group on Earth Observations (GEO GNOME) play a central role, together with specific EU projects such as the large H2020 project ECOPOTENTIAL, devoted to analysing changes in the ecosystems of a network of Protected Areas in Europe and beyond (www.ecopotential-project.eu).

Among the many controlling factors, the state of the cryosphere is a crucial driver of ecosystem functioning (see for example Callaghan and Johansson, 2015 for a recent review). Retreating glaciers open new bare areas for colonization, and changes in snow cover affect ecosystem dynamics in multiple ways. Earlier snowmelt is associated with an anticipation of the blooming season of alpine plants (Pettorelli et al., 2007) which could induce a mismatch between producers (plants) and consumers (herbivores), similar to what is observed in Arctic regions (Post et al. 2009).
Several examples of the controlling role of snow on mountain ecosystems are available. Here, we focus on two specific examples, related to the population dynamics of two species that are symbols of high-Alpine environments: the Alpine ibex (Capra ibex, Fig. 7), and the Alpine rock ptarmigan (Lagopus muta, Fig. 8).

2.6.1 Alpine ibex

The population of the Alpine ibex (Fig. 7b), for instance, has been monitored annually in the Gran Paradiso National Park, (Italy) since 1956, providing the longest time series of continuous ungulate censuses in the world (Jacobson et al. 2004; Figure 7a), and was contrasted against.

An empirical, correlation-based nonlinear model relating the ibex population density to climatic variables and the population abundance in the previous year, revealed the crucial role of the average winter snow depth (Jacobson et al., 2004; Fig 7). In particular, the adult ibex population density is limited by the winter snow cover in a much stronger way when the population size is large (Figure 7c). By contrast, the dramatic decline of

This empirical model also correctly captured the significant increase in population resulting from a series of winters with low snow cover after the mid-1980s. After 1995, however, the ibex population displayed a dramatic decrease even if the snow cover continued to remain shallow. Analysis of the behavior of the different age classes could have linked the decline to a drastic reduction in the survival of newborns into their first winter (Mignatti et al 2012). The cause for this reduction is not fully understood, but it has been suggested that the reduced snow cover and the earlier snowmelt would have lead to an earlier blooming period of alpine grasses. This earlier blooming causes them to be drier and less energetic in late July, which is the period when newborns are fed with milk by their ibex mothers. In this case, snow thus seems to have a dual effect: too much winter snow limits adult survival, whereas too little snow produces a mismatch between alpine grass blooming and herbivores needs, leading to a negative effect on the population. It has to be noted, however, that the species response cannot be expected anticipated by examining just a single mechanism.

2.6.2 Alpine Rock Ptarmigan

Abundance Since 1996 the population of the Alpine rock ptarmigan (Fig. 8b) has been observed to decline in abundance as well based on annually censused data from the Alpe Veglia e Devero Natural Park, northwestern Italy, revealing a clear decline in its abundance (Fig. 8a).

Analysis of bird counts and meteorological data (temperature, precipitation, snow cover and depth) revealed that the dominant drivers of the population dynamics are above all controlled by the onset date of spring snowmelt, and the starting date of the autumn snow cover (Imperio et al., 2013). Ecosystem models driven by outputs of RCMs are able to reproduce the observed changes, and project a further population decline. However, the
results—that all include the effect of snow cover—can differ considerably depending on how effects of population density are accounted for (see future trajectories in Figs. 8d–and 8e). This is true even for models showing similar ability of reproducing past population changes, and indicates the difficulty in identifying the correct interplay of mechanisms controlling ecosystem evolution.

3 Challenges and issues for cryosphere research in European mountains

3.1 Observational data: access, availability, quality, spatial and temporal distribution

Quality-controlled data with high spatial and temporal resolution are essential for both the detection of past changes in components of the cryosphere, and the development and validation of numerical models that project future evolution (Lehning et al., 2016; Beniston et al., 2012; Quevauviller et al., 2012). The reliability of data used in climate-related research has been questioned in the past, particularly with respect to whether the accuracy and precision of environmental data—including temperature and precipitation, for example—are sufficient for distinguishing long-term trends from inter-annual variability. In addition to intrinsic accuracy-limitations of measuring equipment, changes of sensors, sensor location or surrounding environment can make the interpretation of non-homogenized time series very challenging (Venema et al., 2012). The methodologies applied for data collection and homogenization often differ as a result of different legislations, competences, practices or priorities—a problem particularly prominent in Europe, were mountain areas (Alps, Pyrenees, Scandinavia) are under different national and regional authorities. Data quality must thus be assured by rigorous and standardized control. International coordination and standards must be established, and compliance has to be guaranteed.

Existing measurement sites and instruments are not homogeneously distributed. Environmental observations are typically biased towards lowland and mid-elevations, mostly because of the technical and logistical challenges in maintaining high-elevation monitoring sites. There is a clear lack of, and demand for, adequate environmental information from high elevations. Such information is obviously essential for cryosphere related research, and pivotal for quantifying elevation-dependent warming, precipitation, snowmelt, or river runoff, amongst others. Substantial efforts and new ideas are required to improve the spatial coverage and representativeness of the variables of interest (Orlowsky and Seneviratne, 2014). Europe could take a leading role here, since despite complicated logistics, most measurement sites of interest in mountainous terrain are still in within a reasonably range of accessibility.

Data availability and spatial coverage is often confined by country borders or by limited competence and responsibility of the institutions collecting the data. This is the reason why, for example, studies on snow changes based on in-situ measurements and covering the entire Alps barely exist. “Administrative-borders effects” due to the relatively small size of countries comprising mountains often also influence spatially interpolated data, introducing artifacts from artificial domain
limits. In the worst case, such artifacts can flaw the findings of entire studies. Rather than adhering to administrative borders, environmental data should sample regions defined on the base of geomorphological, topographical, and climatologic considerations. This is one of the (political, nonscientific) challenges that could – if resolved – significantly improve the availability and homogeneity of cryosphere related observational data.

5

To date, many data have restricted ownership. The consequences of such non-open-access policies include lack of data, impossibility of accessing existing data, delays in obtaining them, non-availability of real-time data, and duplication of data-collection efforts. A more liberal and open-data policy would contribute to solving part of the problem. The recent push for open-access data policy of major funding agencies (e.g., EC, ERC, NERC, ANR, DFG, SNF) has therefore to be welcomed. To be successful, however, the definition of common standards for different types of environmental data is required. As data acquisition can be related to important investments in terms of both equipment and labor costs, moreover, it is important that adequate mechanisms for rewarding groups and agencies investing in field-data collection are established. This is a particular challenge for the cryosphere since data acquisition involves substantial logistics and maintenance of sensing instrumentation in most cases.

10

Open-access platforms for cryospheric data are currently underdeveloped, and existing efforts for creating such platforms are often uncoordinated. International cooperation, as well as well-defined management, sharing and archiving policies are a key for such efforts to be successful. Platforms should be widely known, easily searchable and citable, contain quality controlled data, and provide standardized metadata to make datasets understandable for end-users. An example for such a platform is the Global Earth Observation System of Systems (GEOSS), which is a data catalogue of a partnership of more than 100 states and the European Commission. The National Snow and Ice Data Center (NSIDC) and the World Glacier Monitoring Service (WGMS) are two examples for institutions providing successful data portals in the cryospheric domain of cryospheric data. At the national level, a noteworthy initiative is the Swiss Open Support Platform for Environmental Research (OSPER), which has set a benchmark in data provision and metadata integration for a large number of environmental datasets. A particular challenge in the centralization and archiving of environmental data is the large data volume generated by modern remote sensing techniques.

15

Recently, both in-situ sensing technology and (terrestrial and air/space born) remote sensing technology are rapidly developing, opening new views and understanding of the cryosphere. A particular challenge here is the combination and two-way validation of in-situ ground-truth data and remotely sensed data. There is also a spatial gap to close, i.e., upscale point measurements to larger areas, and vice versa, focus and validate large-scale data products with reliable, high-quality ground truth observations. This task may be accomplished in European mountain regions where observational station networks are generally relatively dense (and provided that data homogeneity issues are resolved, cf. previous paragraphs).
National meteorological services have for decades been exchanging observations for real-time forecasts and climate monitoring. Such data exchanges have been possible through the establishment of data reporting standards and data models, as well as robust exchange mechanisms, both under the umbrella of a global authoritative organization, i.e., the World Meteorological Organization (WMO). The recent establishment of a Global Cryospheric Watch program at WMO makes it possible that cryospheric data exchange benefits from the experience acquired from the exchange of meteorological information. This is anticipated to significantly facilitate mountain cryospheric studies across borders.

3.2 Modeling of the cryosphere: spatial resolution and physical processes in complex terrain

Snow as a mostly non-permanent interface between the earth’s surface and the atmosphere features a variety of small- and large-scale physical processes, which significantly influence the mass and energy exchange at the surface. Small-scale processes include water transport in snow and firn (Würzer et al., 2016a, Wever et al., 2014; Wever et al., 2016), phase changes (i.e., melt, refreeze, sublimation and condensation), drifting and blowing snow, as well as metamorphism (e.g., Aoki et al., 2011; Pinzer et al. 2012). While the mechanistic point-scale understanding of these processes is rapidly increasing (Wever et al., 2014), the grand challenge arises from quantifying their effect at larger scales, i.e., upscale from the point-scale to the catchment or even continental scale. To date, such up-scaling techniques are missing to a large extent. Examples of the link between large- and small-scale effects are the often significantly altered snow distribution after a storm (Lehning et al., 2008; Schirmer et al., 2009) or the change in snow albedo after a melt event. These effects (and many others) are insufficiently represented in large-scale weather and/or climate models, yet most likely would lead to significant changes in model predictions. The spatial distribution of small-scale snow properties is also essential for the correct interpretation of satellite remote sensing signals. For example, ice-lenses or liquid water in snow heavily influence the microwave backscatter (Marshall et al., 2007), which is the basis for many satellite remote-sensing products. The problem of properly up-scaling snow properties is not peculiar to the complex terrain of mountains, but exists also for less complex topography such as Antarctic sea ice (Trujillo et al., 2016), the Canadian prairies, the Siberian tundra, or the Greenland ice sheet, where it is unknown how much melt water can be stored in snow and firn (Forster et al., 2014) and above typically frozen ground (see also cf. Section 2.3, permafrost) is unknown.

Three relevant scales can be distinguished for the modeling of mountain snow:

- (1) The point scale is typically chosen for applications such as snow stability estimates in the context of avalanche warning (Durand et al., 1999; Gaume et al., 2014) or detailed studies in snow hydrology such as the analysis of rain on snow events (Beniston and Stoffel, 2016; Würzer et al., 2016b), the analysis of the impact of infiltrating melt water on the thermal regime of permafrost (Scherler et al. 2010) and the insulation effects of snow on permafrost slopes and rock walls (Lütschg et al. 2008, Marmy et al. 2016, Gisnås et al. 2014, Haberkorn et al. 2017). For snow modeling, there are two widely used physically based models, namely the French model CROCUS (Vionnet et al., 2012) and the Swiss model SNOWPACK.
(Lehning et al., 1999). Nevertheless, many processes – including metamorphism and mechanical properties for example – still have a high degree of empirical parameterization (Lehning et al., 2002). The main challenge for snow model development at this smallest scale is the formulation of a consistent theory for snow microstructure (Krol and Lowe, 2016) and its metamorphism.

(2) The catchment scale is mostly used employed in hydrological applications (Kumar et al., 2013) and snow models of varying complexity are used for that (Essery, 2015; Magnusson et al., 2015). A principal challenge at this scale is (a) to distinguish between uncertainties introduced by the model structure and uncertainties related to the input data (Schlögl et al., 2016), and (b) to develop site-independent models that can be used without calibration. The latter point is particularly important for reliable predictions of climate change effects (Bavay et al., 2013) and for model applications to ungauged catchments (Parajka et al., 2013). A difficulty is bridging the gap between the scales, i.e., upscale scattered point measurements to the catchment scale. Recent sensing technology (e.g., airborne and terrestrial laser scanning, ALS/TLS) can provide spatially resolved data of snow covered area and snow depth while other important variables such as spatially distributed snow density, and liquid water content, as well as local wind data for modeling snow transport, drift, erosion, redistribution, etc, are instead difficult to obtain. These quantities can be modeled, but corresponding observational data sets should be available for the validation of such model outputs. Furthermore, distributed data of snow albedo would be desirable, as the limitations in the spatial resolution of satellite remote sensing data do not allow for high resolution surface albedo data suitable for model validation to be obtained.

A promising emerging approach here is the use of drones or other UAVs equipped with radiometers and multispectral cameras. Current studies give evidence that this field is rapidly evolving.

(3) The large scale is most relevant in weather forecast and climate models. At all scales, the snow cover affects the surface energy balance through the high snow albedo and its low thermal conductivity at all scales, whilst but at the large scales we expect feedback mechanisms on the regional weather, and climate, and as well as significant influence impacts on the water budget are expected (Groisman et al., 1994; Viterbo and Betts, 1999; Immerzeel et al., 2010).

Large-scale models use relatively simple, parametric snow schemes, as these require only a few input variables and are computationally inexpensive (Bokhorst et al., 2016). Current numerical weather prediction systems generally use single-layer snow schemes (IFS documentation, 2016; GFS documentation, 2016) which are known to oversimplify reality. Only in some rare cases do these models explicitly represent the liquid water content within the snowpack, or incorporate a refined formulation for snow albedo variability (Dutra et al., 2010; Sultana et al., 2014). Climate models generally resolve the diurnal and seasonal variations of surface snow processes (i.e., surface temperature, heat fluxes) while they simplify the treatment of internal snow processes such as liquid water retention, percolation and refreezing within the snowpack (Armstrong and Brun, 2008; Steger et al., 2013) and the evolution of the microstructure due to snow metamorphism. More complex snow schemes, with multiple snow layers and snow-water retention processes have been successfully integrated, for example, in the EC-Earth global climate model (Dutra et al., 2012; Hazeleger et al., 2012). Future research will need to
clarify the degree of complexity required in snow schemes when they are integrated in large-scale climate models (van der Hurk et al., 2016). In large-scale modeling frameworks, reliable snowpack simulations are currently limited by the coarse representation of topography. This implies inaccurate representation of altitudinal temperature gradients, and a crude separation of the precipitation phase, since convective processes are inadequately represented or oversimplified (Wilcox and Donner 2007, Chen and Knutson, 2008; Wehner et al., 2010, Sillmann et al., 2013). The lack of reliable, high-resolution observations of snow water equivalent, moreover, hampers the validation of climate model outputs (Mudryk et al., 2015), especially with respect to streamflow. Future improvements in snow simulations are required in the domains of increased horizontal resolution (Boyle and Klein, 2010), snow transport and post-depositional redistribution, and refinement in the representation of precipitation processes, including convection and cloud microphysics (Kang et al., 2015).

The increasing abundance of field data helps refining our understanding through direct data-based inference (Diggle and Ribeiro, 2007) and assimilation techniques (Leisenring and Moradkhani, 2011). While such approaches are common to various fields of environmental sciences (e.g., Banerjee et al., 2003), the specificities of cryosphere data require adaptations of the general framework of statistical modelling. Cryosphere-specific difficulties include the existence of embedded spatial scales (Mott et al., 2011), strong vertical gradients (e.g., temperature, wind speed, phase of precipitation, etc.), and the non-linearity linked phase transitions (Morán-Tejeda et al., 2013). Taking maximum advantage of data sets of increasing size, variety and quantity also involves proceeding in parallel with the development of adapted and comprehensive statistical models (Gilks et al., 2001; Wikle, 2003; Cappé et al., 2005). The easiest way to address spatio-temporal data is to separate space and time effects (Cressie and Wikle, 2011). However, temporal evolutions at small spatial scales cannot be inferred in this manner. Regional climate change interacting with topography has, for example, resulted in different evolutions of avalanche activity over different parts of the French Alps (Lavigne et al., 2015). On this basis, other applications of non-separable spatio-temporal covariance models (Gneiting et al., 2007; Genton and Kleiber, 2015), have great potential for further research in the alpine cryosphere.

Similar challenges need to be addressed in permafrost modelling: (1) static large-scale permafrost distribution models, (2) high-resolution and site-specific permafrost evolution models and (3) transient hemispheric permafrost models or land-surface schemes of RCM/GCMs. Current state-of-the-art permafrost distribution models (e.g., Gisnås et al. 2017) are forced not only by statistical and topo-climatic variables such as mean annual air temperature and potential incoming radiation, but also by operationally gridded data-sets of daily air temperature and snow cover. Statistical distributions of snow and other surface characteristics (soil type, roughness) allow for the representation of sub-grid variability of ground temperature (Gubler et al. 2011, Gisnås et al. 2014, 2016). However, the lack of spatial data on subsurface properties (thermal conductivity, porosity, ice content, etc.) prohibit a refined assessment of the permafrost distribution on catchment or local scales, at least for the discontinuous permafrost zone. Acquiring spatial data on subsurface
properties as input and validation data is hereby one of the greatest current challenges in permafrost research (e.g., Hauck 2013, Etzelmüller 2013, Gubler et al. 2013).

In site-specific model studies, these subsurface data are often available due to borehole drillings and geophysical surveying (cf. Section 2.3—Permafrost). High-resolution subsurface models can then be calibrated to the observed permafrost conditions, and used for subsequent climate impact studies, as long as model calibration can be assumed to be constant in a future climate. These models have often originated from high-resolution hydrological models (e.g., GEOtop, Endrizzi et al. 2014), soil models (e.g., COUP model, Jansson 2012, Marmy et al. 2016) or snow models (such as Alpine3D/Snowpack, Lehning et al. 2006, Haberkorn et al. 2017) and have been successfully extended to simulate the complex permafrost environment. Recently, also explicit permafrost models have been developed (Cryogrid 3, Westermann et al. 2016). Model inter-comparison studies with uncalibrated model set-ups show, however, that due to the abundance of permafrost-relevant processes in atmosphere, snow/surface and subsurface, a detailed simulation of permafrost processes on local scales is impossible without the availability of surface and subsurface data (Ekici et al. 2015). This is especially due to the difficulty to simulate phase changes in permafrost and corresponding latent heat transfer correctly, which becomes even more important the larger the uncertainty about initial ground ice content is.

Challenges in regional or hemispheric permafrost modelling therefore include not only numerical aspects or process-oriented model improvements, but also data availability and up-scaling issues (Fiddes et al. 2015, Westermann et al. 2015). Most land surface schemes of current GCM’s and RCM’s now have soil freezing schemes included (e.g., McGuire et al. 2016), however, neither reliable ground ice content maps as input nor ground temperature maps for validation exist. In combination with the need for good snow, soil moisture and vegetation data, this lack of deeper subsurface information poses the largest uncertainties in current and future permafrost temperature and distribution estimates.

3.3 Estimating liquid/solid precipitation in complex terrain

Large uncertainties affect the estimates of solid and liquid precipitation at high elevations (Rasmussen et al., 2012). These uncertainties mainly arise from two situations: (a) The low density of precipitation gauges at high elevation (only 3% of homogenized stations worldwide are located above 2000 m a.s.l., and less than 1% above 3000 m a.s.l.; Pepin et al., 2015); while areas >3000m comprise only a small fraction of the European landscape, it is exactly these regions where many cryospheric processes are located, e.g., permafrost or the perennial snow cover. (b) The large biases in precipitation observations due to under-catch at high elevations which is on the order of 30% (Adams and Lettenmeier, 2003; Yang et al., 2005) and is particularly large for solid precipitation. This is because solid precipitation is particularly influenced by wind, and perturbations due to icing and riming. Efforts are currently ongoing to address these problems (e.g., Solid Precipitation Inter-comparison Experiment, WMO), but reliable references for ground truth measurements are still not available.
The precise quantification of precipitation and its spatial and temporal distribution are crucial for predicting future water availability. The spatial distribution of precipitation is not only determined by synoptic systems but is also strongly affected by topography (Mott et al., 2010). For snow, post-depositional transport such as creep, saltation, suspension, and avalanching additionally influence the spatial distribution. How these processes may change as a response to future modifications in local and synoptic wind patterns is presently poorly understood.

Recently, remote sensing methods such as terrestrial and airborne laser scanning or radar have been successful in quantifying solid and liquid precipitation. Recent progress in measuring snow distribution in mountains (Grunewald et al., 2010; Kirchner et al., 2014) has allowed a better understanding of typical distribution patterns of Alpine water resources (Grunewald et al., 2014) as well as making a link to precipitation (-Scipion et al., 2013; Mott et al., 2014). The results have highlighted that even in highly instrumented mountain ranges such as the Alps, total precipitation is very poorly quantified. The combination of new measurement options with more classical ones such as precipitation radar will lead to a more complete understanding of precipitation amounts in high mountains.

3.4 Glacier mass changes

3.4.1 From local to regional assessments

The temporal and spatial incompleteness of available glacier mass balance data, limits the estimates of the contribution of glacier melting to sea-level rise, water resources, and biodiversity in mountain catchments. For regional assessments of glacier mass balance, combining local studies for selected glaciers with remote sensing for larger regions is a priority. This is also a strategy within the integrative monitoring approach presented by the Global Terrestrial Network for Glaciers (e.g., Haeberli et al., 2000).

The increasing number of satellite sensors, together with their improved spatial, radiometric, and temporal resolutions, has made remote sensing essential for the monitoring of glaciers. Computing decadal glacier-volume variations at the regional scale from the differencing of digital elevation data has become a standard technique (e.g., Berthier et al., 2014). Retrieving glacier-wide annual or seasonal surface mass balance is more challenging but can be assessed by measuring the end-of-summer snow line as a proxy for the equilibrium-line elevation (e.g., Rabatel et al., 2005), or using albedo maps of the glacier surface (Dumont et al., 2012). Recent studies showed that winter and summer balances can be quantified either by integrating the albedo signal over the accumulation or ablation period (Sirguey et al., 2016), or by using seasonal snow maps derived from the SPOT-VGT sensor (Drolon et al., 2016). In-situ data are, however, still required to calibrate relationships and validate the methods.
New satellite sensors (e.g., Sentinel-1 and -2) provide also the possibilities to complement in-situ measurements for glacier surface flow velocities. This has been done for large regions and very short time intervals (5-10 days) (Dehecq et al., 2015; Kääb et al., 2016). Such data are crucial to monitor the dynamic state of glaciers, to aid inverse approaches for estimating ice thickness distribution, or for the assessment of glacier-related hazards.

3.4.2 Assessment of future changes

In order to increase the accuracy of future glacier projections and runoff estimates, a number of issues need to be addressed. Ice thickness distribution is an important input for dynamic glacier modeling. As it is impossible to measure ice thickness distributions of all glaciers individually, model applications are necessary. Several existing models have been compared within the Ice Thickness Models Intercomparison eXperiment (Farinotti et al., 2017), revealing that results largely depend on the quality of the input data (glacier outline, surface elevation, mass balance or velocities). New high-resolution satellite images make such input data available, thus opening the way toward improved future global estimates of glacier thicknesses.

Another challenge in glacier modeling is the use of approaches that explicitly consider ice dynamics for glacier evolution. Jouvet et al. (2009) showed that 3D full-Stokes models representing ice flow without approximation can be applied if the required input data are available (e.g., glacier thickness, surface velocities), but such applications at the regional scale still require simplifications (Clarke et al., 2015). For estimating future glacier evolution, ice dynamics models need to be coupled to adequate representation of glacier surface mass balance.

A key issue in this respect is the modeling of future surface mass balance at the mountain-range scale. The so-called Glacier Model Intercomparison Project (Glacier-MIP, www.climate-cryosphere.org/activities/targeted/glaciermip) assesses the performance of regional to global-scale glacier models to foster the improvement of the individual approaches and to reduce uncertainties in future projections. There are uncertainties in future changes of meteorological variables and in their downscaling at a spatial scale compatible with glaciers (Sections 2b, e and g). Some studies use classical degree-day approaches for long-term simulations of glacier-wide surface mass balance (Réveillet et al., 2017), or also account for potential radiation (Hock, 1999). However, with a shift in energy fluxes at the glacier surface, calibrated degree-day factors might change in the future. Application of process-based models that are able to resolve the full energy balance are thus required (Hanzer et al., 2016), but the accuracy and resolution of the input data needs to be improved. A focus on modeling winter balance and the spatial distribution of snow accumulation is also needed to improve the modeling of glacier-wide surface mass balance (Réveillet et al., 2017). Additional studies should also assess the impact of supraglacial debris and related feedbacks on the surface energy balance (Reid and Brock, 2010). This is particularly important as many glacier tongues tend to become increasingly debris covered as they shrink. Feedback effects of black carbon and aerosols deposition on the glacier surface is also subject of further studies (Gabbi et al., 2015). Finally, more research on glacial sediment
transport and erosion is needed as glacier retreat exposes large amounts of unconsolidated and erodible sediments that might represent a hazard potential or reduce the efficiency of hydropower plants (Lane et al., 2016).

3.5 Extreme snow events and related hazards

Heavy snow events and related phenomena such as avalanches are by definition rare. This makes them much less well understood and more difficult to forecast than “average” behaviors. This is reflected in the lack of related baseline data (IPCC, 2012; 2013). Also in mountains, mass movements involving snow often occur at very local scales, making them difficult to relate to climate model outputs, even with downscaling methods (Rousselot et al., 2012; Kotlarski et al., 2014).

Snow-related extremes are often the result of a combination of different processes (e.g., wind and snow for drifting snow) making predictions of their future behavior highly uncertain. In contrast, they are among the most severe natural hazards in European mountains, where their damage potential impacting upon very local domains often puts people and infrastructures at risk. For example, winter storms often hinder mobility by disrupting rail, road and air traffic. Extreme snowfall can overload buildings and cause them to collapse, and can lead to flooding due to subsequent melting. Deep snow, combined with strong winds and unstable snowpack, contributes to the formation of avalanches, and can cause fatalities and economic loss as a result of damage to property or communication routes.

3.5.1 Changes in snow extremes

Whether extreme snowfall and snow depths will decrease or not in European mountains in the future remains an unsolved question for now. This is because of the limited results available, and because of possible compensation mechanisms between warmer temperatures, more intense precipitation, and increased climate variability, that all make the future regime of snow storms (i.e. their number, magnitude, and timing) difficult to anticipate. In addition, nearly all available results concern marginal distributions, or make an assumption of stationarity (Blanchet and Davison, 2010; Gaume et al., 2013). Recent results, however, suggest that the dependence structure of extreme snowfalls may be affected by warming (Nicolet et al., 2016). Such information is important for extrapolating outside of observation points and evaluating integrated quantities.

More detailed knowledge about the evolution of extremes in snow properties will be relevant as well. The moisture content or density of snow is needed, for example, when evaluating the probability for a particular infrastructure to collapse under future extreme snow loads (Sadovský and Sykora, 2013). This topic has not yet been addressed, and developments in jointly projecting the evolution of the different variables are required. The same holds true for projections of heavy drifting snow events resulting from wind gusts. To date, the combined evolution of snow amount, type (dry, wet), and density in complex mountain topography remains virtually unknown. More generally, impact models relating socio-economic consequences to extreme snow events (e.g., roof collapse probability as a function of snow mass and roof technology, or risk to road traffic as...
function of snow storm magnitude) remain oversimplified. Efforts are required to combine snow-climate and vulnerability-assessment expertise (Favier et al., 2014) if realistic future projections are to be made.

3.5.2 Changes in snow avalanche activity in relation to snow and ecosystem changes

Even if empirical relations between snow avalanche activity and climate do exist (Mock and Birkeland, 2000), knowledge of long-term responses of avalanche risk to climate change remains largely insufficient. With a few exceptions, studies focus on the very recent decades, and exist only for a very restricted number of regions (Stoffel et al., 2006; Corona et al., 2012, 2013; Schläppy et al., 2014, 2016). Direct effects of climate change on the avalanche number, timing, magnitude and type mainly exist in the form of changes in snow amounts, snowfall succession, density and stratigraphy as a function of elevation. Indirect effects are linked to changes in forest locations, size, and species composition. Notably, the ongoing rise of tree lines may reduce both avalanche frequency and magnitude. This is because of the reduction of potential release areas, the reduction in triggering susceptibility (as a result of the anchoring effect of trees) and the reduction in runout for a given snow amount. However, avalanche-forest interactions remain complex processes, and are not yet fully understood, even under stationary conditions (Bebi et al., 2009). A possible general shift in elevation of avalanche activity may be hypothesized, but this is neither proven, nor generalizable at the very local level. Constituting and investigating long-term series of avalanche events (including historical and paleo-archives in addition to existing records; see Stoffel et al., 2010) will be required to test this hypothesis.

Due to the highly non-linear nature of avalanche triggering response to snow and weather inputs (Schweizer et al., 2003), and to the complex relations between temperature, snow amounts, and avalanche dynamics (Bartelt et al., 2012; Naaim et al., 2013), investigating how snow-climate controls the physics of snow avalanches remains necessary for realistic projections. In particular, it is unclear whether warmer temperatures always lead to fewer avalanches because of less snow. This is because of potentially higher instability levels in winter linked to larger climate variability (Beniston, 2005). The most destructive avalanches, moreover, mostly involve very cold and dry snow resulting from large snowfall, but may also result from wet snow events whose frequency has increased in the past (Castebrunet et al., 2014). Recent results show that wet-snow avalanches indeed have a high damage potential due to their potentially long runouts and high impact pressures (Sovilla et al., 2010; Ancey, 2015). Hence, specific investigation of the rheology of such flows is required to realistically anticipate future changes in avalanche risk.

3.5.3 Other snow contributions to mass movements and cascading processes

In addition to snow avalanches, snow plays a role in numerous other mass movements and/or cascading processes, and understanding their temporal evolution is important. Until recently, for example, slush-flows – mixtures of water and loose snow (Hestnes, 1998) – were mostly documented in Scandinavian mountains during a rather short spring period only (Schlyter et al., 1993). Local testimonies, however, now report such events over larger areas and longer time periods. This
seems to be in relation to changes in snow cover characteristics. Similarly, mixed ice and snow avalanches are expected to become more common due to the retreat of hanging glaciers and the resulting ice falls. This was observed for the Grandes Jorasses (Margreth and Funk, 1998; Vincent et al., 2015) and Taconnaz cases, for example. Also in relation to permafrost degradation and glacier recession, high snow amounts could play a role (Stoffel et al., 2014b). To which extent ongoing warming will affect the frequency of such processes in European mountains remains to be investigated in greater detail. In order to reduce expected impacts, enhanced efforts are also required to better define adaptation and mitigation strategies. These include the detection of favorable locations for infrastructure, the better prediction of avalanche timing and magnitude, and the design of efficient early warning systems.

3.6 Shifts in geomorphic risks as a function of changing cryosphere conditions

Changes in air temperatures and precipitation are likely to affect the frequency and magnitude of mass movements such as shallow landslides, debris flows, rock slope failures, or ice avalanches (Stoffel and Beniston, 2006; Stoffel et al., 2014a, b). So far, however, changes in mass-movement activity can hardly be detected in observational records, making the projection of the future evolution of such phenomena particularly challenging.

The largest and most important changes and impacts related to permafrost thawing have yet to occur. In general terms, smaller permafrost bodies with deeper freeze-thaw-freeze cycles are expected. Changing air temperatures are obviously controlling such changes, but other factors, such as micro-climate, terrain and soil properties, as well as the onset and duration of snow cover can play important roles (Scherler et al., 2014). Understanding the interplays between these mechanisms and going beyond temperature-based projections will be a key for the reliability of future projections.

Changes in temperatures and precipitation will not only affect permafrost, but are projected to influence the frequency and magnitude of mass wasting processes in mountain environments more in general (IPCC, 2012; Gobiet et al., 2014). This is especially true for processes driven by water, such as debris flows (Stoffel and Huggel, 2012; Borga et al., 2014). A warmer climate also results in more precipitation to fall in liquid form at high elevations, thus increasing the area contributing effectively to runoff (Beniston, 2005; Stoffel and Beniston, 2006). At the same time, however, increasing air temperatures may allow vegetation to colonize higher elevations, possibly stabilizing loose material (Baroni et al., 2007). To date, this interplay between long-term vegetation evolution and various types of slope instabilities is poorly understood and loosely quantified.

The temporal evolution of debris-flow frequencies has been addressed for a series of high-elevation catchments in the Swiss Alps (Stoffel et al., 2011, 2014a, b). Based on statistically downscaled RCM data and an assessment of sediment availability, these studies concluded that the temporal frequency of debris flows is unlikely to change significantly by the mid-21st
century, but is likely to decrease during the second part of the century, especially in summer. The magnitude of the events, however, might increase due to larger sediment availability. This is particularly true in summer and fall when the active layer of the permafrost bodies is largest and allows for larger volumes of sediment to be mobilized (Lugon and Stoffel, 2010). The accelerations of rock-glacier bodies might play an additional role (Stoffel and Huggel, 2012). Providing projections for future sediment availability and release for areas that are experiencing permafrost degradation and glacier retreat remains challenging, and significant efforts are required if the associated uncertainties are to be reduced. This is particularly important in the European Alps, where the exposure of people and infrastructure to hazards related to mass movements is high (Haeberli, 2013).

Several studies have documented recent events of rock slope failures in the Alps (Ravanel et al., 2010; Ravanel and Deline, 2011; Huggel et al., 2012; Allen and Huggel, 2013). Some of these failures clearly seem clearly related to de-glaciation processes (Fischer et al., 2010; Korup et al., 2012; Strozzi et al., 2010). Extremely warm temperatures have additionally been associated with these processes as the penetration of melt water from snow and ice into cleft systems results in a reduction of shear strength and enhanced slope deformation (Hasler et al., 2012). Considering the multiple factors that affect rock slope stability, however, it is generally difficult to attribute individual events to one single factor (Huggel et al., 2013), and improved integrative assessments are necessary.

Further evidence of climatic impacts on high-mountain rock slope stability comes from the analysis of historical events. For the Alps, inventories documenting events since 1990 exist (Ravanel and Deline, 2011; Huggel et al., 2012), and indicate a sharp increase in the number of events since 1990. Monitoring and documentation efforts for rock slope failures have been intensified during the past decades, thus introducing a certain bias as compared to the early 20th century. This is especially true for small rock-fall events. Although the documentation for large (e.g., >100,000 m³) slope failures (e.g., >100,000 m³) can be assumed to be reasonably complete, improving the homogeneity of the datasets upon which trend-analyses are built is important if the correct conclusions are to be drawn. In Switzerland, for example, the temporal distribution of rock slope failures resembles the evolution of mean annual temperatures, but it is unclear to which degree this correlation is affected by varying temporal completeness of the underlying datasets. The temperature sensitivity of rock slope stability in high mountains should therefore be further investigated.

3.7 Evaluating and communicating uncertainty

As outlined throughout the manuscript, predicting the future evolution of cryospheric components is challenging. On the one hand, the challenges stem from the incomplete understanding of the processes leading to given changes, on the other, future predictions are intrinsically affected by a range of uncertainties. Adequately evaluating and communicating such uncertainties is all but a trivial task, and this is both because the interplay between individual systems can be complex, and because end-users of projections are typically uncertainty-adverse. Outside the scientific community, “uncertainty” and
“error” are two concepts often not sufficiently distinguished. This can lead to important misunderstanding and misinterpretations. Improving the way uncertainties are communicated is especially important when presenting scientific results to policymakers or stakeholders, as this can significantly affect the level of trust assigned to a particular finding.

The key element driving future changes in the cryosphere is, obviously, the evolution of future climate. Uncertainties in future climate projections will, thus, inevitably propagate to any change derived therefrom. Increasing the awareness for-of what-the kind of uncertainties which affect projections of future climate is therefore of paramount importance. Clearly making a distinction between the concepts of “prediction” (or “forecast”) and “scenarios” (or “projection”) for example, is central: Whilst the first concept refers to the assessment of the likelihood with which a future event will happen given the evidence that is available up to a certain point in time, the second describes the consequences arising if a certain set of assumptions are to become true in the future. As an example: A meteorological forecast aims at telling what weather will occur during the upcoming days by assessing the state of a given set of variables that can be measured at the moment the forecast is issued; a climate change scenario, instead, aims at telling what the mean atmospheric conditions will be in several decades-time, if a given change in radiative forcing was to occur.

Another important point to be made is that measurements are also affected by uncertainties as well. This may seem trivial at first, but is neglected all too often outside the scientific community, where “measurement” is often interpreted as equivalent to “truth”. Climate model simulations, for example, are often validated against gridded observational datasets. Translating station-based information to gridded data products, however, requires several steps including quality control, homogenization, and interpolation for instance. Differences in grid resolution, station density, interpolation method, and sampling error add additional uncertainties which can, in case of precipitation for example, even be variable in time and space (Rudolf et al., 1994; Schneider et al., 2014). As an example, Fig. 9 shows the magnitude of the resulting differences by comparing 3 different datasets of “observed” winter and summer precipitation for central Europe. Large differences are particularly evident in the region regions of complex topography, such as the Alps, Norway, mountainous parts of Italy, the Carpathians, the Pyrenees, or the west coast of the British Isles.

Climate models are obviously affected-prone by-to uncertainties as well, which are related to: (1) the expected climate forcing, (2) natural climate variability, and (3) internal model variability (Tebaldi and Knutti, 2007; Hawkins and Sutton, 2009). Whilst natural variability dominates uncertainty at time scales up to a few decades, scenario uncertainty is dominant on even longer time scales. Model uncertainty can be important across time scales (Latif, 2011), and is again most prominent for mountains and complex topography (Fig. 10). The reasons for this are This is principally related to the differences in model resolution and model parameterizations.
4 Conclusions

This review has brought together a sample of the knowledge and the experience of numerous experts in the fields of mountain snow, ice and permafrost in European mountain regions, in order to convey their views on the prospects and challenges for research on the cryosphere as it responds to past, current, and future changes in climate. While we do not claim to have provided an exhaustive overview, the paper has nevertheless addressed the current state of knowledge in terms of the observed evolution of the European mountain cryosphere and associated impacts – notably on water ecosystems and the services provided by these resources. A catalog of challenges has been identified, focusing on as-yet unresolved issues of data access, high-resolution modeling, quantification of risks and extreme events, and communication of uncertainty. These issues have an obvious effect on our capability of projecting future shifts in the mountain cryosphere, and the impacts that these shifts are likely to generate. The latter will have a bearing on the viability of a number of economic sectors, notably including hydropower, agriculture, and tourism.

In this paper, much attention has been devoted to data issues. Indeed, there are numerous limits to data availability, related to spatial and temporal sparseness, and restricted access. Financial and institutional barriers, as well as non-harmonized data policies add to the problem (Quevauviller et al., 2012). Mountain cryosphere research urgently needs data of high quality for both understanding the functioning and evolution of the various elements in specific regions, and assess future changes in snow, ice and permafrost via modelling.

Access to state-of-the art models using high spatial and temporal resolution is essential to furthering our understanding of feedbacks between the atmosphere, the hydrosphere and the cryosphere, and the future behavior of cryospheric processes as a function of greenhouse-gas emissions. Global climate models have seen their resolution increase in recent decades, but much of the information still remains too coarse for most mountain cryosphere research. Physically-based, nested global-to-regional modeling techniques can provide adequate data for atmosphere-cryosphere studies. However, such results are highly-dependent on the initial and boundary conditions that drive the coupled models, and errors in these conditions obviously propagate into the model solutions.

Communicating research results on climate and cryospheric science is a challenge that needs careful consideration. The importance and imminence of climatic change is generally more convincing to a lay audience when changes become visible. A prominent example is the retreat of mountain glaciers, which can convincingly be brought to the public through photography portraying glacier evolution over time. In this sense, climate-induced changes in the cryosphere enable a unique and convincing form of communication to the public and to policymakers, and more effort should be dedicated to illustrate how these changes can impact upon water resources, mountain ecosystems, natural hazards, and thus a wide range of economic activities. Elevation-dependency and regional patterns of the phenomena related with a cryosphere adapting to rapidly changing climatic conditions is an important issue for future comparative research.
By highlighting the impacts of a changing cryosphere as climate evolves, this review has attempted to emphasize the central role of the cryosphere as a key element of environmental change in high mountains. To respond to the changes in climate in coming decades, there will clearly be an increasing need for adaptation strategies based on a robust knowledge base in order to respond to the likely changes in climate in coming decades.

5 Acknowledgements

Martin Beniston and Markus Stoffel would like to acknowledge the support of the University of Geneva for the international cryosphere workshop “From Process Understanding to Impacts and Adaptation”. This meeting took place in Riederalp (Valais Alps), Switzerland, 15-19 March, 2016. Much of the material presented in this article is inspired from the presentations made at this meeting.

References

Beniston, M., and Stoffel, M., 2016: Rain-on-snow events, floods and climate change in the Alps: Events may increase for warming up to 4°C and decrease thereafter. Science of the Total Environment, 571, 228-236. (DOI: 10.1016/j.scitotenv.2016.07.146)

European Alps or similar mountain ranges. The Cryosphere, 6 (1) (2012), pp. 125–140
5 Bojinski S, and 5 others. 2014. The concept of essential climate variables in support of climate research, applications, and policy. American Meteorological Society, Journal online, doi: 10.1175/BAMS-D-13-00047.1
Bojinski S, and 5 others. 2014. The concept of essential climate variables in support of climate research, applications, and policy. American Meteorological Society, Journal online, doi: 10.1175/BAMS-D-13-00047.1
Braithwaite, R. J., & Zhang, Y. (1999). Modelling changes in glacier mass balance that may occur as a result of climate changes. Geografiska Annaler: Series A, Physical Geography, 81(4), 489-496.

Endrizzi, S., Gruber, S., Dall’Amico, M., & Rigon, R. (2014). GEToP 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects. Geoscientific Model Development, 7, 2831-2857.

Fantini A., Raffaele F., Torma C., Bacer S., Coppola E., Giorgi F., Ahrens B., Dubois C., Sanchez E. (2016). Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations, accepted to *Climate Dynamics*.

Fischer M, M Huss, C Barboux, and M Hoelzle. 2014. The new Swiss Glacier Inventory SGI2010: relevance of using high-resolution source data in areas dominated by very small glaciers. Arctic, Antarctic, and Alpine Research, 46(4), 933-945.

Hanzer, F., Förster, K., Nemec, J., Strasser, U. (2017). Projected hydrological and cryospheric impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach, submitted to HESS.

IFS documentation (2016), CY41r2, Part IV: Physical Processes, Chapter 8. ECMWF. (Available at http://www.ecmwf.int/sites/default/files/elibrary/2016/16648-part-iv-physical-processes.pdf)

Matthews J. L, E. Mannshardt, and P. Gremaud (2012). Uncertainty quantification for climate observations. BAMS DOI:10.1175/BAMS-D-12-00042.1

Figure 1: Geographical distribution of the 45 year trend (1968-2012) for April 1\(^{st}\) SWE in the Alps. All stations show a negative trend. Large triangles indicate significant trends (p = 0.05) and small triangles indicate weakly significant trends (p = 0.2). Circles represent stations with no significant trend (p = 0.2). The elevation is given in gray. (Adapted from Marty et al. 2017b)
Figure 2: Length and surface mass balance changes documented with in-situ measurements for glaciers in Scandinavia and in the European Alps. Sources: WGMS (2015) and earlier issues with updates (Andreassen et al., 2016).
Figure 3: Temperature evolution of mountain permafrost in Norway (N), France (F), and Switzerland (CH) measured in boreholes at (a) 10m and (b) 20m depth (exact depth given in parenthesis). Figure adapted from Noetzli et al. (2016).
Figure 4: 15-year change in specific electrical resistivity (given as % specific resistivity change) along a 2-dimensional Electrical Resistivity Tomography (ERT) profile at Schilthorn, Swiss Alps (2900 m a.s.l.). Red colors denote a resistivity decrease corresponding to loss of ground ice with respect to the initial measurement in 1999 (see Hilbich et al. 2008a, 2011 for more details on ERT monitoring in permafrost). The black vertical lines denote borehole locations. (modified after Permos, 2016)
Figure 5: Modelled long-term evolution of ground temperatures at 10 m and 20 m at four different permafrost sites in the Swiss Alps (COR: Murtel-Corvatsch, LAP: Lapires, SCH: Schilthorn, STO: Stockhorn), as simulated with the COUP model (Marmy et al., 2016). The black lines represent the median scenario and the grey zone the range of the 13 GCM/RCM chains which were used to drive the simulations. Modified after Marmy et al. (2016).
Figure 6: Shifts of stream flow regimes for the Rofenache catchment (Austrian Alps, 1891–3762 m a.s.l., 98 km², ~35 % glacierization as of 2006) as simulated with the AMUNDSEN model using downscaled EURO-CORDEX projections for the RCP2.6, RCP4.5 and RCP8.5 scenarios. Solid and dashed lines indicate the multi-model mean total and ice melt runoff, respectively, and shaded bands indicate the climate model uncertainty shown as ± 1 standard deviation. Figure adapted from Hanzer et al. (2017).
Figure 7: (a) Total number of adult Alpine ibex (b) counted at Gran Paradiso National Park, Italy (c). (d) Relative population change against population size. Solid circles indicate that the winter snow depth was more than half a standard deviation above the long-term average. Panels (a) and (b) are adapted from Jacobson et al. (2004).
Figure 8: (a) Observed density of rock ptarmigan cocks at the Veglia Devero protected area, Italy (c). (d-e) Reconstructed (red) and projected (black) rock ptarmigan density from two population dynamics models including (d) snow drivers only, and (e) snow and delayed density dependence. Panels (a), (d) and (c) are adapted from Imperio et al. (2013)
Figure 9: Seasonal average precipitation differences for December-January-February (DJF; left) and June-July-August (JJA; right) between CRU and HRO (first row), E-OBS and CRU (second row), and E-OBS and HRO (third row).
Figure 10: DJF (a) and JJA (b) precipitation as derived from 9 regional climate models. The average of the model ensemble is shown in the top panel at the center.