Supplementary Tables

SI Table 1. Climate data sets used to drive each model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Climate forcing data</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLM4.5</td>
<td>CRUNCEP4<sup>1</sup></td>
</tr>
<tr>
<td>CoLM</td>
<td>Princeton<sup>2</sup></td>
</tr>
<tr>
<td>ISBA</td>
<td>WATCH (1901-2010)<sup>3</sup></td>
</tr>
<tr>
<td>JULES</td>
<td>WATCH (1901-2001)<sup>3</sup></td>
</tr>
<tr>
<td>LPJ-GUESS</td>
<td>CRU TS 3.1<sup>4</sup></td>
</tr>
<tr>
<td>MIROC-ESM</td>
<td>CMIP5 Drivers<sup>5</sup>, WATCH (1901-1978)<sup>3</sup></td>
</tr>
<tr>
<td>ORCHIDEE</td>
<td>WFDEI (1978-2009)<sup>6</sup></td>
</tr>
<tr>
<td>UVic</td>
<td>CRUNCEP4<sup>1</sup>, CRU<sup>7</sup>, UDel<sup>8</sup></td>
</tr>
<tr>
<td>UW-VIC</td>
<td>NCEP-NCAR<sup>9</sup></td>
</tr>
</tbody>
</table>

²Sheffield et al. (2006) (http://hydrology.princeton.edu/data.pgf.php)

⁴Harris et al. (2013), University of East Anglia Climate Research Unit

⁵Watanabe et al. (2011)

⁷Mitchell and Jones (2005) for temperature

⁸Willmott and Matsura (2001) for precipitation

⁹Kalnay et al. (2006)

SI Table 2. Russian-station-location averaged error statistics for air temperature (K) and precipitation (mm/d) for winter 1980-2000. For each variable, the maximum available number of observations (n) is used. \(\text{mean}_{\text{obs}} \) and \(\text{stdev}_{\text{obs}} \) are the station-observed mean and interannual variability (standard deviation), while \(\text{stdev} \) is the standard deviations of each model. Both, air temperature and precipitation are from the climate forcing data sets for all models, except for MIROC-ESM which simulates both. BIAS is the mean error ‘model minus observation’, RMSE is the root-mean-square error, and both represent biases in the climate forcing compared to the station observations (except for MIROC-ESM).

<table>
<thead>
<tr>
<th></th>
<th>Air temperature (n=518)</th>
<th>Precipitation (n=512)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean(_{\text{obs}}): -16.3°C</td>
<td>mean(_{\text{obs}}): 0.89 mm/d</td>
</tr>
<tr>
<td></td>
<td>stdev(_{\text{obs}}): 2.2K</td>
<td>stdev(_{\text{obs}}): 0.5 mm/d</td>
</tr>
<tr>
<td>CLM4.5</td>
<td>-4.7</td>
<td>5.0</td>
</tr>
<tr>
<td>CoLM</td>
<td>-0.9</td>
<td>2.0</td>
</tr>
<tr>
<td>ISBA</td>
<td>-1.6</td>
<td>2.3</td>
</tr>
<tr>
<td>JULES</td>
<td>-2.5</td>
<td>2.9</td>
</tr>
<tr>
<td>LPJ-GUESS</td>
<td>-0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>MIROC-ESM</td>
<td>2.7</td>
<td>5.2</td>
</tr>
<tr>
<td>ORCHIDEE</td>
<td>-1.4</td>
<td>2.4</td>
</tr>
<tr>
<td>UVic</td>
<td>-1.8</td>
<td>2.5</td>
</tr>
<tr>
<td>UW-VIC</td>
<td>-1.1</td>
<td>2.2</td>
</tr>
</tbody>
</table>
SI Table 3. Russian-station-location averaged error statistics for snow depth (cm) and temperature difference between 20 cm soil and air temperature (ΔT; K) for winter 1980-2000. For each variable, the maximum available number of observations (n) is used. MeanSt,GS and \text{stdev}St,GS are the observed mean and interannual variability (standard deviation), while \text{stdev} is the standard deviations of each model. Bias is the mean error ‘simulation minus observation’ and \text{rmse} is the root-mean-square error. The statistics for snow depth is given based on both station observation (St) and GlobSnow (GS) data.

<table>
<thead>
<tr>
<th></th>
<th>Snow depth (n=579)</th>
<th>ΔT (n=268)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>meanSt</td>
<td>meanSt</td>
</tr>
<tr>
<td></td>
<td>26.4 cm</td>
<td>11.9 K</td>
</tr>
<tr>
<td></td>
<td>9.0 cm</td>
<td>2.3 K</td>
</tr>
<tr>
<td>biasSt</td>
<td>11.5</td>
<td>15.6</td>
</tr>
<tr>
<td>rmseSt</td>
<td>18.1</td>
<td>21.4</td>
</tr>
<tr>
<td>biasGS</td>
<td>14.3</td>
<td>17.8</td>
</tr>
<tr>
<td>rmseGS</td>
<td>18.1</td>
<td>22.1</td>
</tr>
<tr>
<td>stdev</td>
<td>5.8</td>
<td>9.8</td>
</tr>
<tr>
<td>biasGS</td>
<td>2.3</td>
<td>2.7</td>
</tr>
<tr>
<td>rmseGS</td>
<td>4.1</td>
<td>3.7</td>
</tr>
<tr>
<td>stdev</td>
<td>2.2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>biasMSU</th>
<th>rmseMSU</th>
<th>biasORAS</th>
<th>rmseORAS</th>
<th>biasGS</th>
<th>rmseGS</th>
<th>stdevGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLM4.5</td>
<td>11.5</td>
<td>18.1</td>
<td>14.3</td>
<td>18.1</td>
<td>5.8</td>
<td>2.3</td>
<td>4.1</td>
</tr>
<tr>
<td>CoLM</td>
<td>15.6</td>
<td>21.4</td>
<td>17.8</td>
<td>22.1</td>
<td>9.8</td>
<td>2.7</td>
<td>3.7</td>
</tr>
<tr>
<td>ISBA</td>
<td>13.0</td>
<td>18.8</td>
<td>15.7</td>
<td>19.8</td>
<td>9.5</td>
<td>-8.4</td>
<td>9.1</td>
</tr>
<tr>
<td>JULES</td>
<td>-4.1</td>
<td>14.1</td>
<td>-1.3</td>
<td>12.8</td>
<td>7.7</td>
<td>-0.8</td>
<td>4.2</td>
</tr>
<tr>
<td>LPJ-GUESS</td>
<td>-5.3</td>
<td>17.3</td>
<td>-2.5</td>
<td>16.0</td>
<td>5.0</td>
<td>-0.7</td>
<td>3.7</td>
</tr>
<tr>
<td>MIROC-ESM</td>
<td>-0.4</td>
<td>17.9</td>
<td>1.9</td>
<td>14.0</td>
<td>6.3</td>
<td>-4.9</td>
<td>6.7</td>
</tr>
<tr>
<td>ORCHIDEE</td>
<td>-8.7</td>
<td>16.5</td>
<td>-5.3</td>
<td>15.3</td>
<td>6.9</td>
<td>-5.2</td>
<td>6.0</td>
</tr>
<tr>
<td>UVic</td>
<td>-3.7</td>
<td>18.9</td>
<td>-0.5</td>
<td>16.8</td>
<td>9.4</td>
<td>-5.1</td>
<td>6.5</td>
</tr>
<tr>
<td>UW-VIC</td>
<td>12.5</td>
<td>19.8</td>
<td>15.0</td>
<td>20.0</td>
<td>10.4</td>
<td>-1.3</td>
<td>4.8</td>
</tr>
</tbody>
</table>
SI Figure 1. Histogram of seasonal winter mean snow depth from 268 Russian stations between 1980-2000.
SI Figure 2. Variation of ΔT (K) (the difference between soil temperature at 20 cm depth and air temperature) with snow depth (cm) for winter 1980-2000. The dots represent the medians of 5 cm snow depth bins and the upper and lower bars indicate the 25th and 75th percentiles, calculated from all Russian station grid points (n=268) and 21 individual winters. Color represents two different air temperature regimes (redish: -15°C<\text{AirT}< -5°C, blueish: \text{AirT}≤ -25°C) for early (Nov.-Dec.; ND) and late (Jan.-Feb.; JF) winter.
SI Figure 3. Spatial maps of the correlation coefficients between soil temperature at 20 cm depth and air temperature for winter 1980-2000. Regions with greater than 95% significance are hashed.
SI Figure 4. Spatial maps of the correlation coefficients between soil temperature at 20 cm depth and snow depth for winter 1980-2000. Regions with greater than 95% significance are hashed.
SI Figure 5. Spatial maps of mean air temperature (°C) for winter 1980-2000.
SI Figure 6. Spatial maps of mean precipitation (mm/d) for winter 1980-2000.
SI Figure 7. Spatial maps of snow fall (mm/d) for winter 1980-2000.
SI Figure 8. Spatial maps of ΔT (K) (difference between soil temperature at 20 cm depth and air temperature) for winter 1980-2000.
SI Figure 9. Spatial maps of snow density (kg m\(^{-3}\)) (calculated by the quotient of snow water equivalent and snow depth, if not directly output) for winter 1980-2000.