Response to Editor

Manuscript: Brief Communication: The Khurdopin glacier surge revisited – extreme flow velocities and formation of a dammed lake in 2017

Utrecht, 21st of November 2017

Dear Editor,

Thank you very much for pointing out the issues below (in bold) and apologies for not covering all concerns entirely. We have followed your suggestions in detail and provide responses to all issues raised below. Note that the line numbering corresponds to the Manuscript Version without Markups.

With kind regards,

Jakob Steiner
Your response stresses at several instances that your submission is intended to be a Brief Communication (BC). With the reviewers’ comments in mind I wonder if a BC is indeed the best format, or whether a normal paper would not make more sense. If you want to stick to a BC, then please make sure that the wording is very concise, unambiguous and fit and extensive elaborations for explanations could be omitted.

Considering that our paper is only focusing on a single surge event on one glacier we believe that the Brief Communication format is the most suitable. We describe a very recent event using a novel dataset and method (Planet Satellites, AMES pipeline for ASTER DEMs) with potential implications for subsequent studies and it is in line with previous work published as BC as well (Quincey and Luckman, 2014). This is in line with the description of what constitutes a Brief Communication at The Cryosphere. We have further condensed the text as detailed in the individual responses below and specifically at P1L18, P1L26, P3L4 and the Discussion. We pointed out the key findings more specifically in the Abstract (P1L18) and the Discussion (P4L19 – P5L1).

In the first two paragraphs rev. 2 provides a very structured criticism what should be improved in the manuscript. Your response falls short of showing what you indeed did to adequately consider them. E.g. point 2. steeper bedrock topography is briefly mentioned in the revision, but I do not find that this is the intended discussion the reviewer asked for. Please specify what you did change.

We have readdressed the comments of reviewer 2 and our response is provided pointwise below.

1. If the abstract and the conclusions could be modified to give the key message much greater prominence the manuscript would have greater impact.

We have adapted the abstract to point out the essential findings. These include the actual values found for the surge in 2017 (peak velocity, P1L14), rapid development of the surge (P1L15), confirmation of the return period (P1L17) and the potential of Planet (and ASTER) data to document and investigate surges because of a more frequent overpass than Landsat (P1L18ff; new edit in this version). We have removed the part on the triggers for the surge as they cannot be fully ascertained from the data but they are discussed now only in the Discussion (P4L19 – P5L1, new edits in this version).

2. The relevance of the steep bed topography at 12-km needs some further discussion/explanation. Is the suggestion that it provides a control on surge dynamics? Or even that it is responsible for the spatial imbalance in flow? Presumably it doesn’t provide a bottle-neck to flow (I imagine the opposite if anything)? Is the modelled ice particularly thin above the step and potentially frozen? Some consideration of the possibilities would be a welcome addition.

The coincidence of the steep bedrock and the turnover point for mass as well as the point of speedup of velocities is striking and warrants attention. We have no further (field) data to ascertain it drives the surge but we now provide an additional calculation including the slope and ice thickness that shows that it could indeed play a role in accelerating flow during quiescence and the early build up phase, resulting in a transition from a cold to a temperate thermal regime at the bed (P4L19ff). As the reviewer points out it is not a bottle neck and the ice thickness is in the same order of magnitude as elsewhere on the tongue. The relatively high slope is an indicator that ice deformation
plays a significant role during the early phase, while a switch from the frozen state to a temperate state must have occurred to explain the much higher velocities soon after. The flat velocity profiles during the actual surge phase then point to basal sliding being the dominant process. We now describe this in the lines following P4L19.

3. There appear to be many more velocity datasets discussed in the text than presented in the figures. Is there a reason for not showing all of the velocity data? It would really help with visualising the evolution of the surge to have them all (or at least more than the current three) available.

We have considered this by including all surge velocities available in Figure 1 and providing additional data in the Supplementary Material (Table S2).

4. The discussion of whether the surge is thermally or hydrologically triggered lacks real evidence so I would suggest toning it down or even removing it. It is likely that both thermal and hydrological processes will be at play as you infer in your own discussion.

See our response to the following comment by the Editor.

5. There needs to be some uncertainty analysis of the dh/dt data. How well coregistered were the DEMs? Showing off-glacier areas of dh/dt data (and velocity data) would help here, as would the distribution of those values. This extra analysis would be a good addition to the Supplementary, with uncertainty shading added to the figures and an error range added to the values stated in the main text.

We included a description of the DEM uncertainty based on an analysis of off-glacier areas in the supplemental material (section 2.2) and here we also described the corrections applied on the DEMs.

Regarding point 4., you toned down the role of the type of triggering mechanism, but it is still stressed in the abstract that you „... hypothesize that the surge is initiated as a result of increased pressure melting caused by ice accumulation resulting in extremely high basal flow velocities.“ I find such a statement unfit for an abstract. In fact, although it is in principle alright to have some hypothesis at the end of a paper, which cannot be fully falsified or verified (as long as that is clearly stated), in the present case I find that these two possible trigger mechanisms are insufficiently discussed in the MS.

My suggestions here are
a) say in the abstract what you did and what you did (or did not) find (evidence) and
b) explain in more detail why you come to a certain conclusion, e.g. the statement on p4/I26 requires more explanation.

„... thermal switch hypothesis being at play, because ...“.

Thank you for these suggestions. We have removed the hypothesis from the abstract and we have improved this part in the discussion by stressing the importance of the steep gradient as a possible focal point for the surge initiation (from P4L19). Using estimates for ice deformation we show that the bed is likely cold based during quiescence but switches to temperate in the steep section, which could explain the local initiation of the surge (Figure
The surge itself, with its extreme velocities and plug flow, is clearly characterized by basal sliding, further confirmed by large amounts of basal till emerging from the snout.

Your response to rev. 2 comment on p4., l26: „we...discussed this advantage in Section 4.“: I did not see where you added or extended such a discussion, please clarify.

This reference was misplaced and should have referred to Section 6 (P5L3), where we emphasize the value of the Planet data. We also emphasize this by now showing all velocities from the surge in Figure 1, which enable us to make statements about the location of the surge peak and rapid acceleration and deceleration (P2L41 and following).

Figure 1:

a-c: Provide georeferenced coordinates (mandatory!). You don’t need a grid, it would be sufficient to show a couple of lat/ion ticks/labels on the border of the figure.

We have now added a georeferenced grid to the Figure.

a-c: Add units of velocity

We have added the units.

cross correlating -> cross-correlating Landsat ...
We have changed this.

Explain graph d please further in the caption, not too clear yet, especially the difference between the black lines and the red/yellow lines; e.g. by: "values for the quiescence have been multiplied by ..., values for the build-up ...". This leads to ambiguities. A figure should be understandable from the caption alone.

We have amended this in the caption to clarify this visualization.

insert after (yellow): both, for Landsat and Planet.

We have added this.

Figure 2:

„Note that … is much larger than ...“

In addition to showing the original series, why didn't you take this into account by extrapolating the series from 2000-2011 into 2016 and thus calculating more realistic changes in surface elevation? I appreciate that you want to stick simply to the dates of elevation observations, but the physical point you try to make could be emphasized in this way much more, e.g. the impact on erosion rates etc.

We have followed this suggestion and now show ice changes for the quiescent phase (2000 until 28th of August 2015) as one (blue) line and for the surge phase (between 28th of August of 2015 and 21 May 2017 (acquisition time of the ASTER DEM, the actual build up and surge) as a separate line (red). As a consequence the values in Figure 2 have changed substantially. Additionally we adapted the text corresponding to the Figure in P3L15. As a consequence the values for mass changes have changed in P3L24 according to the new time period and as they were calculated inaccurately in the previous manuscript.

Figure S1a: add georeferenced coordinates.

We have now added a georeferenced grid to the Figure.

Minor comments:

p1/l32: remove extra)

We have removed it.

p2/l19: you use two numbers, 30 and 3 m, but do not explain what they mean. Resolution, pixel size, etc.

We have added ‘resolution’ accordingly.

p2/l37: remove extra)
We removed this.

p3/l9: Figures should be sorted according to order of appearance in the text.

We have moved the section on crevassing and strain rates to the conclusion (P4L40) and we have removed a duplicate comment on the stable terminus. Now the order of the figures is restored.

p3/l18: terminus -> apparent terminus

We have added this.

pe/l19: add after moraine: ... dynamically decoupled from the active part of the glacier. That would take care of the rev.’s criticism.

Thanks for this suggestion. We have added it accordingly.

p3/23,24: remove () from Gardelle citation.

We have removed it.

p4/3: "Projected extents": explicitly clarify of what - the lake. of what?
-> the lake. Unclear what you want to say here: if a lake would form again with a certain water level, then would you get this extent?

We agree this is not very clear we have therefore removed it.

Non-public comments to the Author:
Please clearly respond to all of the above points
Brief Communication: The Khurdopin glacier surge revisited – extreme flow velocities and formation of a dammed lake in 2017

Jakob F. Steiner¹, Philip D.A. Kraaijenbrink¹, Sergiu G. Jiduc², Walter W. Immerzeel¹

¹Utrecht University, Department of Physical Geography, PO Box 80115, Utrecht, The Netherlands
²Imperial College London, Centre for Environmental Policy, Faculty of Natural Sciences, SW7 1NA, London, United Kingdom

Correspondence to: Jakob F. Steiner (j.f.steiner@uu.nl)

Abstract. Glacier surges occur regularly in the Karakoram but the driving mechanisms, their frequency and its relation to a changing climate remain unclear. In this study, we use digital elevation models and Landsat imagery in combination with 10 high-resolution imagery from the Planet satellite constellation to quantify surface elevation changes and flow velocities during a glacier surge of the Khurdopin Glacier in 2017. Results reveal that an accumulation of ice volume above a clearly defined steep section of the glacier tongue since the last surge in 1999 eventually leads to a rapid surge in May 2017 peaking with velocities above 5000 m a⁻¹, which is among the fastest rates globally for a mountain glacier. Our data reveals that velocities on the lower tongue increase steadily during a four-year build-up phase prior to the actual surge only to then rapidly peak and decrease again within a few months, which confirms earlier observations with a higher frequency of available velocity data. The surge return period between the reported surges remains relatively constant at 18 (1999 to 2017) and 20 (1979 to 1999) years respectively. It is hypothesized that the surge is initiated as a result of increased pressure melting caused by ice accumulation resulting in extremely high basal flow velocities, which may be further amplified by englacial hydrological processes. Surface observations show increased crevassing and disappearance of supra-glacial ponds, which could have lead to increased lubrication of the glacier bed. Finally, we show the potential of a combination of repeat Planet and ASTER imagery to (a) capture peak surge velocities that are easily missed by less frequent Landsat imagery, (b) observe surface changes that indicate potential drivers of a surge and (c) monitor hazards associated to a surge. At Khurdopin specifically, we observe that the surging glacier blocks the river in the valley and causes a lake to form, which may grow in subsequent years and could pose threats to downstream settlements and infrastructure in case of a sudden breach.

1 Introduction

Surging glaciers are not evenly distributed around the world’s glaciated regions, but occur regularly under certain conditions (Sevestre and Benn, 2015). In the Karakoram, surges have been documented frequently since the end of the 19th century at numerous locations. In recent decades an increase in observed surges has been reported (Copland et al., 2011; Hewitt, 1969, 2007), however this has not been confirmed over larger areas and time periods and it could also be an artefact stemming from the increasing temporal availability of satellite imagery. Two general mechanisms driving surges are proposed: a build-up of ice volume during the quiescent phase in the reservoir zone of the glacier causing (a) increased basal shear stress resulting in till deformation at the glacier bed referred to as the thermal switch hypothesis (Clarke et al., 1984; Quincey et al., 2011). Two general mechanisms driving surges are proposed: a build-up of ice volume during the quiescent phase in the reservoir zone of the glacier causing (a) increased basal shear stress resulting in till deformation at the glacier bed referred to as the thermal switch hypothesis (Clarke et al., 1984; Quincey et al., 2011), and (b) a collapse of hydraulic channels causing a switch from efficient surface and englacial drainage to sudden lubrication of the glacier bed referred to as the hydrological
switch hypothesis (Kamb, 1987). Studies report surges in the region being controlled by both the first (Quincey et al., 2011) as well as the second mechanism (Mayer et al., 2011).

The Karakoram glaciers have received considerable scientific attention because of the anomalous regional mass balance (Kääb et al., 2015) and the large number of surging glaciers (Paul, 2015). Surging activity needs to be better understood to advance our knowledge of ice dynamic processes as well as glacially driven erosion and sediment transport in the region. Moreover, understanding of glacier surges is important as they may result in natural hazards that are due to the formation of ice dams and potential blockage of rivers.

Surges on Khurdopin Glacier, located in the Shimshal valley in Northern Pakistan (36°20'18"N, 75°28'3"E), have been documented to occur since the late 1800s and the most recent surges have occurred in 1979 and 1999 (Copland et al., 2011; Quincey et al., 2011; Quincey and Luckman, 2014; Rankl et al., 2014). These surges were characterized by a gradual increase of velocities before the peak of the surge (Quincey and Luckman, 2014). During the surge events, the lower tongue is pushed further into the valley and has blocked the Vijerab River on several occasions, resulting in an ice dammed lake. In the region, a similar process has been observed and well documented for Kyagar Glacier (Round et al., 2017). Sudden drainage of the Khurdopin Lake has caused destruction to downstream villages before, which led to the development of an early warning system with bonfires along the slopes of the entire Shimshal valley (Iturrizaga, 2005). So far these surges were solely described by investigating velocity data from distinct surface features of the glacier, using both coarse resolution satellite data, and field observations. Results show that the surge velocities can be up to two orders of magnitude faster than during the quiescent phase, however lack of cloud free imagery has made it difficult to accurately characterize the most recent surge (Quincey and Luckman, 2014). In this study, we put these earlier findings into further context by investigating a new surge event in 2017 using recent satellite imagery. First we quantify surge velocities using automated feature tracking. We then quantify mass transport during quiescent and surge phases based on multi-temporal digital elevation model (DEM) analysis and we assess the potential hazard of lake formation using high-resolution optical satellite imagery. Finally, we discuss potential trigger mechanisms that may lead to the onset of the Khurdopin surge.

2 Data and Methods

To derive spatial velocities we use cross-correlation feature tracking using the COSI-Corr software (Leprince et al., 2007) on selected Landsat imagery between 2000 and 2017 (30 m resolution), and on Planet high-resolution imagery (3 m resolution) between 2016 and 2017 (Planet Team, 2017) (Supplemental Table S1). Volume changes were computed using the SRTM from 2000, a TanDEM-X DEM from 2011 and a DEM generated from ASTER imagery from May 2017. The ASTER DEM was generated using the open source Ames Stereo Pipeline software (Shean et al., 2016). We compared the DEMs in stable off-glacier terrain and corrected the products accordingly (see Supplementary Material). Using the GlabTop2 model (Frey et al., 2014) and the SRTM, we computed ice thickness for the glacier and inferred the bed topography. Details on the specific COSI-Corr settings as well as the imagery used are provided in the Supplementary Material. The potential lake volume was calculated by intersecting the visually-derived lake perimeter with the TanDEM-X DEM.

3 Velocities during surge events

Khurdopin Glacier is approximately 41 km in length, 1.5 km in width and has an elevation range between 3300 m above sea level (a.s.l.) in the Shimshal valley to 7760 m a.s.l. at the peak of Kanjut Sar. It is heavily debris covered on the lower 10 km of the tongue and distinct meandering debris bands typical for surge type glaciers are present up to 20 km from the terminus. To investigate velocities on Khurdopin, we separated the tongue into 25 bins at 1 km equidistance along the centreline (Figure 1), and calculated the mean velocity within the bin. Using high-resolution imagery from the Planet satellites with sub-weekly overpasses (Planet Team, 2017), we were able to characterize the surge event and the surface dynamics on the lower tongue and near the glacier terminus.
The surge of Khurdopin observed in 2017 confirms a recurring cycle typical for surging glaciers, ~20 years in this case, with observations of floods possibly caused by lake drainage after a surge in 1901 or 1904, 1923, 1944, 1960 (Hewitt and Liu, 2010) and observed surges in 1979, 1999 and 2017. Mean average surface velocities on the 25 km long main tongue of Khurdopin during a quiescent phase are below 5 m a\(^{-1}\), with a small peak of 15 m a\(^{-1}\) at around 12 km along the tongue. The peak corresponds to a markedly steeper section of the profile (Figure 1). While lack of cloud-free imagery or poor image quality does not always allow accurate identification of the onset, peak and termination of the surge, the data suggest that a gradual increase of surface velocities over multiple years led to surge peaks with velocities up to 4000 m a\(^{-1}\) in 1979 and 1999 (Quincey and Luckman, 2014). The most recent quiescent phase lasted from 2000 until at least 2011. By 2013 the glacier had reached surface velocities above 100 m a\(^{-1}\) beyond the steep section (km-12), but still smaller than 10 m a\(^{-1}\) in the lower 5 km. The build-up phase between the quiescent phase and the actual surge peak between 2015 and 2016 was characterised by increasing surface velocities in the tongue’s upper reach (Figure 1 and Table S3 in the Supplementary Material). Between early 2017 and beginning of June velocities increased up to 5200 m a\(^{-1}\) and dropped again to below 200 m a\(^{-1}\) in most parts by September. While this extreme acceleration and deceleration happened within less than 9 months, the velocity peak along the longitudinal profile remained relatively stable (Figure 1). The increased velocity and associated ice volume redistribution resulted in increased strain rates, evidenced by crevasses appearing at the glacier surface circa early May with a marked increase in size and number since mid-June (Figure 3). Note that the first 1 km of the tongue has remained completely unchanged during the surge as in recent decades, and melt water ponds on the surface indicate it to be likely an ice cored moraine by now (notably the area below the green line in Figure 3). The gradual build-up and then relatively short surge peak support earlier findings based on less frequently available data (Quincey and Luckman, 2014).

4 Ice volume changes during surge events

Apart from increased velocities, surges logically also result in large amounts of displaced ice volume. In many cases this results in a rapid extension of the position of the glacier’s snout. However, in the case of Khurdopin the apparent terminus does not advance and has not done so during at least the recent surges, since it has turned into a stable moraine, dynamically decoupled from the active part of the glacier. This makes detection of actual length changes of the active tongue visually difficult (Figure 1). Using three DEMs (SRTM in 2000, TanDEM-X in 2011 and ASTER in 2017; Supplementary Table S2) the elevation change rates for the quiescent and surge phases are quantified (Figure 2). To match the ice volume changes with the actual surge phase, we extrapolated the annual rate of surface elevation change observed between 2000 and 2011 until the 28\(^{th}\) of August 2015 as a proxy for the quiescent phase surface elevation change. Given the steep rise in velocity it is assumed that from the 28\(^{th}\) of August 2015 onwards the surge phase started and the annual rate in surface elevation change was estimated from the remaining volume difference and the 2017 DEM. The transition from positive to negative elevation change during the quiescent phase is clearly notable and coincides with the steep section of bedrock around km-12 (Figure 2, panel a), an observation made earlier by Gardelle et al., 2012, who identified this distinct behaviour for other glaciers in the region as well. This distinction is again visible exactly at the same location for the surge, when elevation change is positive in the lower reach where mass is accumulating. During the surge in May 2017 the glacier surface between km-3 and 12 has likely gained height by 50 to 80 m, depending on whether we assume the net volume loss during the build-up phase between 2011 and 2016 to be zero or equal to the volume loss during the quiescent phase between 2000 and 2011. Based on the elevation changes we find a net volume gain between 2014 and 2017 of 5202485 ± 10\(^{2}\) m\(^{3}\) (+/− 2255 · 10\(^{2}\) m\(^{3}\) based on the DEM accuracy) between the steep section and the part of the terminus where no more
surface change is visible. Averaged over the entire glacier we estimate that the overall volume loss is slightly negative (see surface elevation change in Figure 2), similar to what is reported by Bolch et al., (2017).

5 Hydrology and Hazards

The tongue of the Khurdopin Glacier reaches across the main valley floor. As a consequence the glacier has blocked the local Vijerab River multiple times in the last century. The blockage is caused by the tongue pushing towards the opposite headwall of the main valley (Figure 3). Most of the reported lake drainages were not catastrophic and they have rarely caused damages downstream beyond eroded fields and damaged bridges (Hewitt and Liu, 2010; Iturrizaga, 2005). From historic Landsat imagery it is obvious that a lake formed during the melt season in two consecutive years after the surge in 1999, likely because the added mass required considerable time to be eroded. In late April 2017, the lake formed at exactly the same location, growing quickly from 72000 m3 at the beginning of May to $1 \cdot 10^8$ m3 one month later and peaking at $2 \cdot 10^8$ m3 on the 28th of June. The lake finally drained starting around the 21st of July and had disappeared by 5th of August. As a consequence the river washed away the road at multiple locations, destroyed at least one main bridge and eroded local agricultural land, making the valley inaccessible for a week. Ice floes on the water surface indicate ice calving from the advancing tongue and could pose an additional threat as they could block a drainage channel temporarily and create a sudden spill upon disintegration. Projected extents based on the DEM analysis correspond well to what was observed in 2000, when the lake was 0.7 km2 or a corresponding $7.5 \cdot 10^6$ m3 (Figure 3). Considering the height of the advanced glacier tongue – between 15 m at the fringe and up to 80160 m on the surging tongue – and the fact that in 2000 the lake reached lake levels ca. 10 m higher than in 2017, we show potential lake extents that could reach beyond 1 km2 or $10 \cdot 10^6$ m3, possibly during the melt season of 2018 or 2019. Repeat floods in the one or two years after a possible surge event have been reported multiple times in the recent century as well (Hewitt and Liu, 2010). The volumes calculated could be decreased by sediments visibly deposited either by the surging glacier or the dammed Vijerab River.

6 Discussion and Conclusion

The data collected and analysed support earlier studies on Khurdopin in the observation of a relatively constant return period of a glacier surge of 20 years since the end of the 19th century, irrespective of a changing climate and surges of nearby glaciers (Hewitt and Liu, 2010; Quincey et al., 2011; Quincey and Luckman, 2014). Using distributed velocity and elevation change data we furthermore show that a division point exists at 12 km up-glacier that separates two distinct reaches of the tongue: (a) the upper reach where velocities gradually increase during the build-up phase and mass continuously accumulates during the 19 years between surges, and (b) the lower reach where velocities peak during the surge and the ice mass previously accumulated in the upper reach is relocated within only a number of weeks. This line likely coincides with a steep bedrock section and is located just below a tributary that possibly supplies a lot of additional mass via avalanche deposits. The surge of 2017 showed a similar four-year build-up time as the surge in 1979 over which the glacier surface in the upper reach increased by approximately 3 m a$^{-1}$ and decreased by up to 7 m a$^{-1}$ in the lower reach. This period is defined by constantly increasing velocities in the upper reaches. It is difficult to ascertain which are the main drivers for the regular surges on Khurdopin Glacier (Quincey and Luckman, 2014). In combination with a gradual accumulation of mass on the upper tongue during quiescence and a resulting steepening surface gradient the actual surge starts rapidly when a tipping point is reached. Ice deformation u_0 (Greve and Blatter, 2009; Round et al., 2017), even when assuming a relatively small ice thickness between 150 m and 250 m, provides a velocity of 4 to 34 m a$^{-1}$ for the 4$^{°}$ steep surface gradient. This is in the same order of magnitude as the measured velocities during quiescence. This points to the thermal switch hypothesis (Clarke et al., 1984) being at play. As velocities increase rapidly from 2015 onwards, the contribution of deformations becomes less important and basal motion amplified by subglacial drainage plays a dominant role. A modelled ice thickness between 120 m and 350 m, results in a velocity of 1 to 60 m a$^{-1}$ for the 1 - 4$^{°}$ steep surface gradient over the whole tongue and 3 m a$^{-1}$.
at the steep section. This is in the same order of magnitude as the measured velocities during quiescence and the early build up phase. While these values stay relatively stable for most of the tongue and can account for the overall glacier flow velocities they increase by an order of magnitude to more than 50 m a⁻¹ in the steep section due to the increase in surface gradient, and thus making up more than 50% of the observed surface velocity. The increase in velocity at this specific location has possibly caused a switch from an otherwise cold to a temperate bed, initiating a rapid increase in basal sliding from 2015 onwards. The sudden absence of supraglacial ponds on the terminus during the surge (Figure 3) and the formation of a supraglacial pond in May 2000 after the last surge exactly at the location of the clear line of change around km-12, could also point at a disturbed englacial network playing a role (Kamb, 1987; Mayer et al., 2011). At least the last two surges occurred at the beginning of the melt season, which could further catalyse the surge if melt water reaches the ice-bedrock interface. Basal sliding is also most likely the dominant flow process as the cross profiles of surface velocity indicate plug flow, characterized by flat rather than parabolic velocity profiles as was observed during the quiescent phase (Kamb et al., 1985). As previously suggested the surge on Khurdopin is hence likely a combination of triggered by the thermal and hydrological switch but the actual surge is dominated by basal sliding (Quincey and Luckman, 2014), similar to Kyagar Glacier (Round et al., 2017). Future field observations should focus on finding possible evidence for these processes and possible feedback processes, especially related to the deformation of water-saturated granular base material that could explain these extreme acceleration rates and peak velocities (Damsgaard et al., 2015). The surface velocities observed during the peak surge in May 2017 on Khurdopin Glacier are, together with the recently observed surge on the neighbouring Hispar Glacier (Paul et al., 2017), the fastest so far reported for the region. In their magnitude and rapid acceleration and deceleration they are comparable to similar bursts at the closely investigated Variegated Glacier (Kamb et al., 1985), where observations with even higher temporal resolution were available. The increased velocity and associated ice volume redistribution resulted in increased strain rates, evidenced by crevasses appearing at the glacier surface since early May with a marked increase in size and number since mid-June (Figure 3d). The high peak rates of basal slip can result in erosion rates up to 0.5 m a⁻¹ for a brief period (Humphrey and Raymond, 1994), a value several orders of magnitudes higher than typical erosion rates in mountain ranges. Large amounts of additional sediments were visible at the glacier snout during the surge.

We can show that newly available satellite imagery with multiple cloud-free sub-weekly image pairs makes the characterization of such a rapid surge cycle possible and confirms high peak velocities that are easily missed by less frequently available Landsat imagery. As a consequence of the surge a lake has formed in the proglacial valley, similar to earlier surges. We quantified its evolution and potential future expansion as it is very likely that the lake will reappear during melt seasons in the following two years until the accumulated mass has sufficiently eroded for the water to drain freely. Exploiting the potential of only recently available high-resolution imagery with frequent overpasses could lead to a better understanding of such surges as it provides the potential for more accurate velocity data (Altena and Kaab, 2017). Additionally, it would also enable faster assessment of risk potentials and subsequent warning of affected communities.

7 Author Contributions
JFS, PDAK and WWI designed the study, JFS and PDAK carried out the data analysis, JFS wrote the manuscript. SGJ pointed out the occurrence of the surge and provided contacts to the local authorities. PDAK, SGJ and WWI reviewed the manuscript.

8 Acknowledgements
This project was supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 676819) and by the research programme VIDI with project number 016.161.308 financed by the Netherlands Organisation for Scientific Research (NWO). We would like to thank Mr.
Waheed Anwar for pointing out the start of the surge in April and for providing the photos included in the manuscript. We also would like to thank PlanetLabs for providing access to their high-resolution imagery.

References

Figure 1: Velocities measured from cross-correlating Landsat imagery of one year of the quiescent phase (a: 17th of October 2010 – 18th of September 2011), the last year of the build-up (b: 28th of August 2015 – 10th of May 2016) and the surge peak in May 2017 (c: 13th to 29th of May, 2017). Panel (d) shows mean values of the bins compared against bed elevation and all available velocity pairs for 2017, between December 2016 (dark red) and September (yellow), both for Landsat and Planet. Values for quiescence are shown at one order of magnitude larger, values for the surge phase at one order of magnitude smaller than measured. Note the difference in scales for the different phases. An animation of the images used to derive the velocities can be found in the Supplementary Material.
Figure 2: Elevation change rates during the quiescent phase (a), and during the build-up and surge phase (b). Mean values per bin are shown in panel (c). Note that the change due to the surge specifically, occurring only in a few months in 2017, is much larger than what is shown, as the difference between the 2011 and 2017 DEM includes at least 4 years of mass loss on the lower, and mass gain at the upper part of the tongue. Note that values for the surge phase are shown at one order of magnitude smaller than measured.
Figure 3: Evidence from the surge event visible at the tongue. The main panel is based on a Planet image from the 28th of June 2017 (Planet Team, 2017). The medial moraines, the lake extent in 2017, the original river bed and moraine crest are also mapped from Planet imagery. The lake extent in 2000 is mapped from the panchromatic band of Landsat 7. The projected lake extents and depths are computed based on the TanDEM-X. Arrows at (a) and (b) denote angle of view for images on the right. Panel (a) shows an overview of the front of the tongue and panel (b) shows the front of the advance. Note the fine dark sediments often associated with a surge event. The tongue below the dashed green line showed no change during the surge. Panels (c) and (d) show the tongue surface before and after the surge. (Photos: Waheed Anwar, May 2017)