Response to reviewer #1

[…] The Discussion and Conclusions need to be expanded significantly to include foehn effects – these are events that occur without concurrent snowfall, that do indeed lead to strong surface melting as you note, but also result in high rates of evaporation, and therefore a reduction in the net SMB. Seasonally and annually, clearly the RACMO model needs to improve this aspect of its estimation of conditions in the area. Foehn events can occur at any time of year in the northern Larsen C. A component of the explanation for the observed northeast-to-southwest gradient is a north (high) to south (lower) gradient in foehn frequency along the western margin of the LCIS, and therefore in the evaporation component. Figure 10 is making this point quite clear, as is Figure 7. Foehn effects are localized, but significant. Previous studies of SMB on the northern Peninsula (van Wessem et al., 2016) have made it clear that the ‘snow desert’ in the lee of the Peninsula (i.e. the eastern ice shelves) is due to foehn.

We acknowledge that sublimation by foehn winds has a modulating effect on Larsen C SMB patterns, with the largest effect in the inlets along the western edge of the ice shelf. The sublimation flux is calculated as part of the RACMO2 SMB fluxes, and below, we try to argue that the sublimation fluxes as simulated by RACMO2 are in agreement with in situ observations.

In a forthcoming paper, we will present sublimation fluxes from an automatic weather station located in Cabinet Inlet (see right panel above). Because the relative humidity sensor exhibited some problems, the estimate of sublimation at this location have greater uncertainty, but range from 17 to 64 mm w.e. or 5 to 18% of the annual surface mass balance. RACMO2 estimates sublimation at this location to be 42 mm w.e. (left panel).

For another location (AWS 14), the mean sublimation flux computed from the weather station observations is ~32 mm w.e. RACMO2 simulates a mean flux between 25 and 30 mm w.e. (left panel).

RACMO2 shows patterns of enhanced sublimation, in places where foehn occurs (left panel); and reduced sublimation downstream of prominent peninsulas extending into the shelf. The differences in sublimation can be large (a factor 3) over short distances, particularly in and around the inlets. This leads us to believe that RACMO2 does a reasonable job at simulating sublimation, including during foehn conditions, in different places of the ice shelf. A sublimation flux of 5-15% of the SMB is in line with observations from other foehn or katabatic wind sites (e.g., Van den Broeke et al., 2010, Antarctic Science).

We acknowledge that sublimation by foehn winds modulates the SMB on the western part of the shelf. This is discussed in the revised manuscript. We feel confident in using RACMO2-simulated fluxes (we acknowledge that it is merely a model) to illustrate this modulating effect on SMB. This modulating effect is now mentioned in an additional paragraph in section 3.4, and in the abstract:

Sublimation exerts a secondary control over SMB. Over LCIS, fõhn winds are frequent, and the combination of high wind speed and dry air increases the sublimation rate. During fõhn, a pattern of alternating higher and lower wind speed emerges in the western part of LCIS, where low-elevation inlets are separated by higher-elevation promontories that protrude from the Antarctic Peninsula mountains (Luckman et al, 2014; Elvidge et al., 2015). An estimate of annual mean sublimation rate from RACMO2 is shown in Figure 12.
While sublimation rates from RACMO2 are poorly evaluated over LCIS, an estimate of sublimation from in situ AWS observations reveals that it amounts to ~25-30 mm w.e. y⁻¹ at AWS 14 (see map in Figure 1), and between 17 and 64 mm w.e. y⁻¹ at the site of a newly installed AWS in Cabinet Inlet. Comparing the sublimation flux (Figure 12) to the total SMB (Figure 10) shows that sublimation spatially modulates SMB in the western part of LCIS, likely by fohn. According to RACMO2, annual mean sublimation typically removes 5-15% of the annual snowfall over LCIS. This fraction could be larger if RACMO2 underestimates the sublimation flux. It is conceivable that the SMB in the inlets (Cabinet, Mill, Whirlwind, Mobiloil) has decreased in recent decades following intensification of fohn (Cape et al., 2016), due to enhanced sublimation.

In the abstract, we added: Combining snow height observations, ground and airborne radar with SMB output from a regional climate model yields a gridded estimate of SMB over LCIS. It confirms that SMB increases from north to south, overprinted by a gradient of increasing SMB to the west, modulated in the west by fohn-induced sublimation.

Abstract, and throughout the paper — Why not use cm for the SMB values, rather than mm? since that is a more appropriate scale to use given the error and nature of the measured quantity?

We have tried to reconcile this by stating all SMB values in meters w.e. For the results of our study, we use a two-decimal accuracy (e.g., 0.43 m w.e. rather than 428 mm w.e.). Only where more accuracy is given in existing literature, we add an additional decimal (e.g. 0.390 and 0.404 m w.e. y⁻¹ for the Dolleman ice cores in section 1).

Last sentences — but you show that SMB does in fact decrease to the west, due to the ablation effects of foehn wind — and this has also been highlighted recently in Cape et al., 2014; Turner et al., 2016, Oliva et al, 2017. You should look at / include these papers in the Discussion. The end of the abstract needs to be re-written to better reflect all your results.

The RACMO2 SMB suggests an increase to the west, apart from the inlets where SMB remains constant or decreases somewhat to the west. This is indeed caused by the modulating effect of foehn and is now included in the manuscript, also in the end of the abstract (see comments above).

you cite Turner et al., 2016 here but not in references; also, not sure which paper you are referring to.

P4L23 – remove ‘in reality’... it’s all reality.

Removed and changed to: The sonic height rangers themselves were always located between 1 and 4 m above the surface.

P6L15 – untangle epsilon and the reference: “... its dielectric constant (ε; Kovacs et al., 1995), which ...”

This was indeed unclear. Changed.

P10L10 – change to: ‘This assumes that there is no ...’ passive voice is actually clearer here.

Adjusted.

Table 2 – The errors in Winter SMB seem too small, given Figure 5.

We have clarified that the stated errors in Table 2 reflect measurement uncertainty, but not the interannual variability that is shown in Figure 5. The uncertainty estimate is valid for the cumulative winter, summer, and annual SMB for the multi-year periods indicated in the rightmost column. In the caption, we added: The confidence interval reflects the measurement accuracy, not the interannual variability. In the text in section
The multi-year mean winter SMB at each site is summarized in Table 2, with confidence intervals reflecting measurement accuracy, not interannual variability in Figure 5.

Although it is true that the permittivity would change with temperature, by listing it first you imply that it would be the most common, and that’s not the case, the other three are more commonly invoked (if not volcanic ash/acid).

We have moved temperature to the end of the sentence: ... or from changes in the firn properties, such as density, fabric, grain size, and temperature.

I wonder if Alison Cook (who I think has looked at every aerial photography taken in the pre-satellite era) would have a notion about a year of extensive melting during this 1930s-1940s period... just a thought.

I would start this as ‘Airborne radar is another, independent ...’

We have rephrased this to: Unlike low-frequency GPR, the OIB radar data only show a single strong subsurface horizon. This is likely related ...

You already introduced this idea in methods with Figure 2 ... need to re-state somehow, further up or here. Perhaps the last line of the paragraph here could be deleted, and the first line of the next paragraph could begin: “To test our earlier assumption that this reflector is the previous summer’s melt horizon, ...”

We followed the reviewer here and added a reference to the hypothesis introduced in section 2.5: To test our earlier assumption that this horizon represents the top of the melt layer formed during the previous melt season (section 2.5), we compared the OIB reflector ...

In methods, the error was given as 6cm? (based on 2GHz bandwidth) ..reconcile.

The typical error is 6 cm as stated in ...

and 2 – RACMO-2 is a model ... While it ‘provides a broader context to the different observations presented above’ (suggested wording change) it really can only ‘... suggest (or imply)’ that the SMB gradient is northeast-southwest (suggested wording change).

We have adapted this suggested wording change: The SMB pattern in Figure 10a provides a broader context to the various data sets presented above. In the area of GPR observations, the RACMO2-guided interpolation suggest that the SMB gradient ...

No, it is dictated by snowfall and evaporation – and RACMO2 is clearly not getting the foehn-derived evaporation component right.

As discussed above, we acknowledge that the sublimation flux from RACMO2 is poorly evaluated, but the limited amount of in-situ observations support the order-of-magnitude estimates of RACMO2. We have added the effect of sublimation here: We use RACMO2 to study the origin of this spatial distribution of SMB. In the absence of notable runoff, SMB is dictated by snowfall, and by sublimation.

Figure 1 – please use the data citation for Mosaic of Antarctica (Haran et al., 2014... at nsidc.org); and the data citation for the IceBridge flightlines as well.

We have added these references.
Figure 2 – Need to describe the sensor used for this radar profile in the caption, and, could indicate where this profile came from in Figure 1 (latter not all that critical)

In the caption, we modified: Sample radar echogram obtained from CReSIS Ku-band radar (14-16 GHz) onboard the 16 November 2009 Operation Ice Bridge flight. Automated surface and subsurface picks are overlaid.

Figure 4 – you could make the depth-integrated lines at the top of (a) bigger – push the 0.0 depth scale down a bit to make more room Nice plot over all.

We have increased the height of the depth-integrated lines by a factor 2.5.

Figure 5 – this plot would take on additional meaning if you added the mean SAM index for the winter period as a bar graph along the bottom, with a right-side y-axis. Start the left-side y-axis at 0 to make room. This would warrant a paragraph discussion in the Discussion.

We looked at winter SAM but found very low correlations with any of the stations. We added SAM in figure 5, and we added: In this timespan, we found no link between SMB and the southern annular mode (SAM, shown as gray bars in Figure 5), with values of R^2 lower than 0.3. Apparently, SAM is not a good indicator for the occurrence of precipitation, like it is for temperature and summer melt, due to enhanced fohn during negative SAM (Cape et al., 2016).

Figure 6 – please note where on the Larsen C this profile was acquired, perhaps in Figure 1. This one is a bit more important, since it shows some location – specific structure at depth.

This has been added to Figure 1.