Brief Communication: Widespread potential for seawater infiltration on Antarctic ice shelves

Sue Cook1, Benjamin K. Galton-Fenzi1,2, Stefan R. M. Ligtenberg3, Richard Coleman4,1

1Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart, Tasmania 7001
2Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050
3Institute for Marine and Atmospheric Research Utrecht (IMAU), P.O. Box 80005, 3508 TA Utrecht, The Netherlands
4Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia

Correspondence to: S. Cook, sue.cook@utas.edu.au

Abstract. Antarctica’s future contribution to sea level change depends on the fate of its fringing ice shelves. One variable which may affect the rates of iceberg calving from ice shelves is the presence of liquid water, including the percolation of seawater into permeable firn layers. Here, we present evidence that most ice shelves around Antarctica have regions where permeable firn exists below sea level. The findings indicate that seawater infiltration onto ice shelves may be much more widespread in Antarctica than previously recognised. Our results present the most likely locations for seawater infiltration to occur, and may be used as an indicator of where future radar studies might be focussed.

1 Introduction

The infiltration of seawater into firn layers on an ice shelf has been observed in a number of locations around Antarctica. The process occurs as water from the ocean intrudes into pores between ice crystals in the firn layer (Scambos et al., 2009). Once within the firn, fresh water freezing turns the seawater into a layer of brine. Observations of brine in ice shelf firn layers have been made directly in firm cores on the McMurdo Ice Shelf (Heine, 1968; Kovacs et al., 1982; Risk and Hochstein, 1967), the Lazarev (Dubrovin, 1960) and the Brunt Ice Shelf (Thomas, 1975). Brine layers can also be observed in ice penetrating radar data. The brine causes strong absorption of the radar signal, and so can be identified by a reflective layer close to sea level (Smith and Evans, 1972) and a loss of basal return (Holland et al., 2009). Brine has been observed by this method on McMurdo (Grima et al., 2016), Wordie (Swithinbank, 1968), Wilkins (Vaughan et al., 1993), Larsen (Smith and Evans, 1972), Brunt (Walford, 1964) and Ross Ice Shelves (Neal, 1979; Robin et al., 1970).

The presence of liquid brine on an ice shelf changes its column-averaged density, thereby affecting calculations of ice thickness derived from altimetry. This in turn, will affect any inferred thickness of marine ice, or calculations of mass flux from the continent (e.g. Fricker et al., 2001). The presence of liquid brine on an ice shelf has also been connected to increased fracture and calving (Scambos et al., 2009). A brine layer provides an additional liquid source, which could contribute to crevasse...
penetration by hydrofracturing. Thus brine-enhanced fracturing could be an important consideration for predicting rates of iceberg calving from affected ice shelves.

Brine infiltration can occur anywhere where permeable firn exists below sea level. Observations of brine on ice shelves have so far been sparse and opportunistic, with no comprehensive overview of where seawater infiltration may be an important consideration. In this paper we use pan-Antarctic geometry datasets along with results from the firn densification model IMAU-FDM (Ligtenberg et al., 2011) to map where the base of the permeable firn layer lies below sea level, referred to as the potential “brine zone”. This represents the upper limit of where brine may be found on an ice shelf. We assess the reliability of the predicted area by comparison with reported observations, and discuss where future studies might be most likely to encounter brine layers on other ice shelves.

2 Methods

We use results from the IMAU-FDM firn densification model to estimate the depth of the permeable firn layer around the continent. The firn densification model IMAU-FDM simulates the temporal evolution of the firn density and temperature profile, including firn compaction rates and liquid water processes (percolation, retention, refreezing, and runoff of surface meltwater). The model is forced at the surface with climate data (e.g. surface temperature, precipitation, sublimation, and melt) from the RACMO2.3 regional climate model (Van Wessem et al., 2014).

Previous work has found that the permeability of firn “declines rapidly after the density of the firn reaches 750 kg m$^{-3}$” (Kovacs and Gow, 1975), while published values for the absolute pore close-off density range between 800 kg m$^{-3}$ (Kovacs and Gow, 1975) and 830 kg m$^{-3}$ (Cuffey and Paterson, 2010). An average firn density profile over 1979-2013 is calculated to identify the depth of each of the three density layers below the surface. We then subtract this depth from the surface elevation, taken from the Bedmap2 pan-Antarctic dataset (Fretwell et al., 2013), to determine where permeable firn exists below sea level. This is used to map out a potential “brine zone” for each of the three cut off densities, i.e. the area where permeable firn is predicted to exist below sea level. This brine zone is the theoretical areal extent where seawater infiltration is possible.

3 Results

Our results show that nearly all Antarctic ice shelves have a region where seawater infiltration is possible (Fig. 1). The percentage of the total ice shelf area potentially vulnerable to seawater infiltration is 9% for the 750 kg m$^{-3}$ threshold, 22% for the 800 kg m$^{-3}$ threshold and 40% for the 830 kg m$^{-3}$ threshold, using ice shelf areas defined by the MOA dataset (Haran et al., 2005; Scambos et al., 2007). The calculated areas are strongly affected by uncertainties in the input datasets, which are unfortunately high in both the FDM data (typically around 15%) and the surface elevation data (uncertainty ±15 m, bias ±5 m (Fretwell et al., 2013)). Using a combined firn depth error estimate derived from uncertainties within the FDM equations and long-term average accumulation and melt in RACMO2.3, along with the mean uncertainty in the surface elevation (Griggs and Bamber, 2011), we have calculated upper and lower limits on the brine zone areas (Table 1). The mean uncertainty in the
surface elevation has also been shown to underestimate the error on some ice shelves such as George VI, Abbot, Mertz and Bach (Griggs and Bamber, 2011). Combined with the ambiguity in the literature over the most appropriate threshold for permeability, this leaves a substantial uncertainty in the true area vulnerable to seawater infiltration.

4 Previous observations

To assess how the calculated brine zones compare to observations of true brine extent, we map out the locations of previous firn cores and radar surveys which can help to validate the presence of liquid brine (Fig. 2). The map shows all recorded firn cores on floating ice which have penetrated below sea level, most of which contained no brine. The exceptions are a number of ice cores on the McMurdo Ice Shelf (Heine, 1968; Kovacs et al., 1982; Risk and Hochstein, 1967), one on the Lazarev (Dubrovin, 1960) and one on the Brunt Ice Shelf (Thomas, 1975). All of these boreholes fall firmly within our predicted brine zone, using a 750 kg m⁻³ permeability threshold. The remaining ice cores, where no brine was observed, are listed in Supplementary Table 1. Some of these cores fall within the mapped brine zones, but only one on the McMurdo ice shelf lies within the 750 kg m⁻³ brine zone.

We have only considered studies where an ice core was retrieved, as boreholes drilled with hot water may not reliably identify the presence of brine. We have also excluded one study on the Shackleton Ice Shelf which stated that seawater was found in the “lower portion” (Morev et al., 1988). We believe this may refer to a brine soaked layer, as the study found the firn layer to extend significantly below sea level, however it may also refer to upwelling when the core reached the ocean cavity so we have not included this as definitive evidence of seawater infiltration into firn on the Shackleton Ice Shelf.

Seawater infiltration has also previously been identified on a number of ice shelves using ice penetrating radar, characterised by a reflective layer close to sea level and a loss of basal return (Fig. 2, Supplementary Table 2). Not all of these observations are useful for constraining the brine zone extent due to the imprecise published locations. In other cases, the ice front has changed significantly since the observations were made. For example, the Wordie Ice Shelf has almost entirely collapsed since the brine observations were made (Cook and Vaughan, 2010).

The most comprehensive surveys of ice shelf brine layers come from a dense network of flights over the Wilkins Ice Shelf, where a brine layer is present in almost the entire ice shelf area (Fig. 2b), and the McMurdo Ice Shelf, where radar observations of brine have been confirmed by multiple firn core observations (Fig. 2e). The geometry of the Wilkins Ice Shelf has changed substantially since the radar observations were made, however the 750 kg m⁻³ brine zone still provides a reasonable match to the observed brine extent. Conversely, on the McMurdo Ice Shelf the 750 kg m⁻³ brine zone significantly over predicts the observed brine extent (Fig. 2e). In all of the observational records we have studied, only one observation of brine has been made outside the predicted 750 kg m⁻³ brine zone: an airborne radar campaign identified brine in the Western Ross Ice Shelf (Neal, 1979), in a region lying within the 800 kg m⁻³ brine zone (Fig. 2c).
5 Discussion

Our results identify many new locations where seawater infiltration is possible but has not been previously observed. This implies that seawater infiltration may be much more widespread than has previously been realised, although the uncertainties on the mapped areas are high. The size of the potential brine zone is controlled by the balance between the thickness of the ice shelf and the depth of the firn layer. Some regions with a large potential brine zone have an unusually thick firn layer caused by high snowfall, such as Edward VIII Bay (Supplementary Figs. 1&2). In other areas such as the Riiser-Larsen area and Princess Ragnhild Coast, the large brine zone is caused by unusually thin ice, driven by the lateral spreading of unconfined ice shelves (Supplementary Fig. 3). On the West Antarctic coastline, high snowfall is combined with significant ocean melting, both drawing permeable firn below sea level (Supplementary Fig. 2).

Density perturbations caused by an internal brine layer have the potential to affect variables calculated from altimetry data assuming hydrostatic equilibrium, e.g. ice shelf thickness, commonly used in ice sheet mass flux studies, or detection of basal marine ice (e.g. Fricker et al., 2001). The presence of brine can change the density of the firn layer by up to 70% (Heine, 1968), introducing error into calculated mass fluxes. The presence of brine on an ice shelf can also potentially affect iceberg calving rates, through the availability of liquid water. Brine saturation has been identified as a potential factor behind the 2008 breakup of the Wilkins Ice Shelf (Scambos et al., 2009). As liquid water on an ice shelf enters surface crevasses, the additional pressure causes the crevasses to deepen by hydrofracture, eventually leading to calving. Although seawater infiltration is a less efficient mechanism for hydrofracture than surface melting, since the brine column can be no higher than the waterline, it has the potential to enhance calving rates wherever it occurs. An interesting feature of our results is that the modelled potential brine zone on Larsen C Ice Shelf aligns well with a zone of rift formation, which is the source of the much publicised crack which recently led to one of the largest calving events on record (Jansen et al., 2015) (Supplementary Fig. 6). The presence of brine in this area of the Larsen C has been independently verified by an airborne radar survey, which detected brine “in the vicinity of rifts in the ice shelf.” (Smith, 1972).

Our results indicate the total ice shelf area where permeable firn lies below sea level, but this does not necessarily imply that the firn contains brine. For seawater to enter the firn requires a direct connection between permeable firn and the ocean. This means that for seawater infiltration to occur away from the calving front requires basal fractures in the ice to penetrate into the firn layer, connecting inland firn with ocean water. We hypothesise that this is the seawater pathway in the Western Ross Ice Shelf, where a brine layer has been observed at the “transition from valley glacier to ice shelf” (Robin et al., 1970) (Fig. 2c).

There is also the question of whether refreezing of brine within the firn layer will block pore spaces, preventing further penetration inland. This is the suggested reason behind observations from the Little America V firn core on the Ross Ice Shelf, where permeable firn at -22°C was found below sea level with no brine layer present (Gow, 1968). In sea ice literature, brine percolation has been observed to stop at a threshold of between -8 and -10°C (Golden et al., 2007; Pringle et al., 2009), but firn core data from McMurdo IS has demonstrated that liquid brine can exist in firn at temperatures below -15°C (Kovacs et
Therefore, low firn temperatures do not necessarily seem to be a barrier to seawater infiltration.

The extent of seawater infiltration is affected not only by the firn temperature, but also the speed of infiltration, which depends on the firn porosity, viscosity of the brine and the pressure gradient driving flow (Thomas, 1975). In order to maintain a steady state brine extent with seawater percolating inland from the coast, the speed of percolation should equal or exceed the speed of ice flow. Therefore high flow speeds may prevent an ice shelf from maintaining a large area of liquid brine. However, if the seawater source is an inland fracture, the flow of the shelf is no barrier to a significant brine zone area. Previous observations of brine percolation speed are limited, but range from 245 ma\(^{-1}\) on the McMurdo Ice Shelf (Kovacs et al., 1982) to 400 ma\(^{-1}\) on the Brunt Ice Shelf (Thomas, 1975). Areas near an ice shelf calving front with high speeds and calving rates are unlikely to maintain a significant area of brine.

Taking these factors into account, we suggest the most likely new locations for brine to be observed are the Abbot Ice Shelf, Nickerson Ice Shelf, Sultzberger Ice Shelf, Rennick Ice Shelf, and slower moving regions of the Shackleton Ice Shelf. These shelves have large areas with permeable firn below sea level, relatively warm annual mean air temperatures and low flow speeds providing the ideal conditions for maintaining a large area of liquid brine. Many of these ice shelves have been overflown by Operation Icebridge or other airborne radar campaigns, and may be a potential target for identifying new brine regions. Other shelves such as the Drygalski Ice Tongue have an apparently large potential brine zone, but low firn temperatures are likely to limit seawater infiltration. In other locations such as the Larsen D and West Ice Shelves, seawater infiltration is likely to occur but high ice velocities may limit the ability of the shelf to maintain a large brine zone.

6 Conclusions

Seawater infiltration has only previously been observed in a small number of ice shelves. Our results demonstrate that, according to firn densification model results, most ice shelves around Antarctica have some regions where permeable firn exists below sea level, meaning that seawater infiltration may be more widespread than previously realised. However, our mapped region of potential brine infiltration is subject to high uncertainties arising from both the data used for mapping, and in the effects of other factors such as firn temperature on infiltration rates. We consider the most likely areas for future observations of brine infiltration to be the Abbot Ice Shelf, Nickerson Ice Shelf, Sultzberger Ice Shelf, Rennick Ice Shelf, and slower moving regions of the Shackleton Ice Shelf, and would recommend future work to examine airborne radar over these regions for any evidence of a brine layer.

The area of ice shelves covered by a potential brine zone may also be set to grow in a warming climate. Melt rates underneath ice shelves have been observed to increase in recent decades, particularly in West Antarctica (Paolo et al., 2015). Increased basal melt would have the effect of drawing larger regions of permeable firn below sea level. In addition, increased snowfall (Thomas et al., 2015) would exacerbate this effect, although this may be counteracted by increasing surface melt (Kuipers Munneke et al., 2014). Widespread seawater infiltration could be an important consideration for future studies using altimetry.
to calculate Antarctic mass flux. It also has implications for the future stability of ice shelves, due to its potential to affect fracture propagation and contribute to ice shelf disintegration by hydrofracture.

References

Table 1: Percentage of total Antarctic ice shelf area covered by potential brine zone. For each of the three threshold densities we provide our best estimate of percentage area of Antarctic ice shelves where permeable firn lies below sea level, and maximum and minimum bounds allowing for published uncertainties in the firn air content (Ligtenberg et al., 2011) and surface elevation datasets (Griggs and Bamber, 2011).

<table>
<thead>
<tr>
<th>Brine zone: 750 kg m⁻³</th>
<th>Percentage of total ice shelf area covered</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.7 %</td>
<td>1.3 %</td>
<td>20.4 %</td>
</tr>
<tr>
<td>Brine zone: 800 kg m⁻³</td>
<td>21.7 %</td>
<td>4.3 %</td>
<td>52.8 %</td>
</tr>
<tr>
<td>Brine zone: 830 kg m⁻³</td>
<td>39.3 %</td>
<td>8.7 %</td>
<td>65.2 %</td>
</tr>
</tbody>
</table>
Figure 1: Map of potential brine zones areas around Antarctica. Map shows areas where permeable firn lies below sea level (the “brine zone”), with the threshold for firn permeability defined as 750 kg m$^{-3}$ (red), 800 kg m$^{-3}$ (yellow) and 830 kg m$^{-3}$ (blue). Bar charts show the percentage area of selected ice shelves covered by the brine zone.
Figure 2: Previous observations of firn and brine around Antarctica. Coloured areas show potential brine zones as described in Fig. 1. Closed circles indicate boreholes where brine has been observed. Open circles are firn cores which penetrated below sea level but found no brine. Black dashed boxes show regions where radar surveys have identified brine in the firn layer, with one observation on the Western Ross Ice Shelf highlighted with a black star in subfigure c. Grey boxes on the main map indicate the extent of regions mapped in subfigures: b. Wilkins Ice Shelf, c. Ross Ice Shelf, d. Princess Ragnhild coast and e. McMurdo Ice Shelf.