Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Discussion papers
https://doi.org/10.5194/tc-2018-225
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2018-225
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Nov 2018

Research article | 07 Nov 2018

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal The Cryosphere (TC).

Eemian Greenland ice sheet simulated with a higher-order model shows strong sensitivity to SMB forcing

Andreas Plach1, Kerim H. Nisancioglu1,2, Petra M. Langebroek3, and Andreas Born1 Andreas Plach et al.
  • 1Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
  • 2Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
  • 3NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway

Abstract. The Greenland ice sheet (GrIS) contributes increasingly to global sea level rise and its past history is a valuable reference for future sea level projections. We present ice sheet simulations for the Eemian interglacial period (~125,000 years ago), the period with the most recent warmer-than-present summer climate over Greenland. The evolution of the Eemian GrIS is simulated with a 3D higher-order ice sheet model forced with surface mass balance (SMB) derived from regional climate simulations. Sensitivity experiments with different SMB, basal friction, and ice flow approximations are discussed. We find that the SMB forcing is the controlling factor setting the Eemian minimum ice volume, emphasizing the importance of a reliable SMB model. Our results suggest that when estimating the contribution from the GrIS to sea level rise during warm periods, such as the Eemian interglacial period, the SMB forcing is more important than the representation of ice flow.

Andreas Plach et al.
Interactive discussion
Status: open (until 02 Jan 2019)
Status: open (until 02 Jan 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Andreas Plach et al.
Andreas Plach et al.
Viewed  
Total article views: 331 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
255 75 1 331 1 2
  • HTML: 255
  • PDF: 75
  • XML: 1
  • Total: 331
  • BibTeX: 1
  • EndNote: 2
Views and downloads (calculated since 07 Nov 2018)
Cumulative views and downloads (calculated since 07 Nov 2018)
Viewed (geographical distribution)  
Total article views: 325 (including HTML, PDF, and XML) Thereof 325 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 15 Dec 2018
Publications Copernicus
Download
Short summary
Meltwater from the Greenland ice sheet (GrIS) rises sea level and knowing how the GrIS behaved in the past will help to become better in predicting its future. Here, the evolution of the past GrIS is shown to be dominated by how much ice melts (a result of the prevailing climate) rather than how ice flow is represented in the simulations. Therefore, it is very important to know past climates accurately, in order to be able to simulate the evolution of the GrIS and its contribution to sea level.
Meltwater from the Greenland ice sheet (GrIS) rises sea level and knowing how the GrIS behaved...
Citation
Share