Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year
    5.558
  • CiteScore value: 4.84 CiteScore
    4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
Discussion papers
https://doi.org/10.5194/tc-2018-267
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2018-267
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Dec 2018

Research article | 19 Dec 2018

Review status
This discussion paper is a preprint. A revision of the manuscript is under review for the journal The Cryosphere (TC).

Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble

Harry Zekollari1,2, Matthias Huss1,3, and Daniel Farinotti1,2 Harry Zekollari et al.
  • 1Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Zürich, Switzerland
  • 2Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
  • 3Department of Geosciences, University of Fribourg, Fribourg, Switzerland

Abstract. Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. The future evolution of these glaciers is driven by surface mass balance and ice flow processes, which the latter is to date not included in regional glacier projections for the Alps. Here, we model the future evolution of glaciers in the European Alps with GloGEMflow, an extended version of the Global Glacier Evolution Model (GloGEM), in which both surface mass balance and ice flow are explicitly accounted for. The mass balance model is calibrated with glacier-specific geodetic mass balances, and forced with high-resolution regional climate model (RCM) simulations from the EURO-CORDEX ensemble. The evolution of the total glacier volume in the coming decades is relatively similar under the various representative concentrations pathways (RCP2.6, 4.5 and 8.5), with volume losses of about 47–52 % in 2050 with respect to 2017. We find that under RCP2.6, the ice loss in the second part of the 21st century is relatively limited and that about one-third (36.8 % ± 11.1 %) of the present-day (2017) ice volume will still present in 2100. Under a strong warming (RCP8.5) the future evolution of the glaciers is dictated by a substantial increase in surface melt, and glaciers are projected to largely disappear by 2100 (94.4 ± 4.4 % volume loss vs. 2017). For a given RCP, differences in future changes are mainly determined by the driving global climate model, rather than by the RCM that is coupled to it, and these differences are larger than those arising from various model parameters. We find that under a limited warming, the inclusion of ice dynamics reduces the projected mass loss and that this effect increases with the glacier elevation range, implying that the inclusion of ice dynamics is likely to be important for global glacier evolution projections.

Harry Zekollari et al.
Interactive discussion
Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Harry Zekollari et al.
Harry Zekollari et al.
Viewed  
Total article views: 617 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
425 187 5 617 33 5 5
  • HTML: 425
  • PDF: 187
  • XML: 5
  • Total: 617
  • Supplement: 33
  • BibTeX: 5
  • EndNote: 5
Views and downloads (calculated since 19 Dec 2018)
Cumulative views and downloads (calculated since 19 Dec 2018)
Viewed (geographical distribution)  
Total article views: 254 (including HTML, PDF, and XML) Thereof 254 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 22 Mar 2019
Publications Copernicus
Download
Short summary
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. Here, we model the future evolution of all glaciers in the Alps with a novel model that combines both ice flow and melt processes. We find that under a limited warming scenario about one-third of the present-day ice volume will still be present by the end of the century, while under a strong warming more than 90 % of the volume is lost by 2100.
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source...
Citation