Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year
    5.558
  • CiteScore value: 4.84 CiteScore
    4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
Discussion papers
https://doi.org/10.5194/tc-2018-268
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2018-268
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Jan 2019

Research article | 04 Jan 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal The Cryosphere (TC).

Shear failure of weak snow layers in the first hours after burial

Benjamin Reuter1,2, Neige Calonne2,3, and Ed Adams2 Benjamin Reuter et al.
  • 1WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
  • 2Montana State University, Department of Civil Engineering, 205 Cobleigh Hall, Bozeman, MT 59717, U.S.A.
  • 3Météo-France – CNRS, CNRM-GAME, UMR3589, CEN, 1441 rue de la piscine, 38400 Saint Martin d'Hères, France

Abstract. In a dry stratified snowcover slab avalanches release following failure in a weak layer below the slab. Typically, such weak layers consist either of persistent grain types or precipitation particles. Experience suggests that non-persistent instabilities often crest during or towards the end of a storm – probably because weak layers of precipitation particles strengthen rapidly. Studies so far have mainly focused on persistent grain types providing only sparse data to describe non-persistent weak layer failure.

To understand differences between persistent and non-persistent weak layers we measured fracture mechanical properties relevant for avalanche release in a temporal series of laboratory tests. At defined lag times we tested small layered samples containing a weak layer of surface hoar, facets or decomposing fragmented particles in shear. Highspeed frames from the failure zone and image correlation analysis confirm that weak layers concentrate the shear strain. Failure consistently occurred after 20–30 % of strain energy was dissipated – despite shear strain rates as high 10−2 s−1. Our results of shear modulus and shear fracture toughness compare well with published data. The values for surface hoar and decomposing fragmented particles increased due to sintering. In the first hours after burial both weak layers had similarly low values, indicating they are equally fragile. Only for surface hoar and decomposing fragmented particles could we calibrate a formulation which allows for estimating the shear modulus from SMP signals.

Benjamin Reuter et al.
Interactive discussion
Status: open (until 06 Apr 2019)
Status: open (until 06 Apr 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Benjamin Reuter et al.
Benjamin Reuter et al.
Viewed  
Total article views: 258 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
189 67 2 258 0 2
  • HTML: 189
  • PDF: 67
  • XML: 2
  • Total: 258
  • BibTeX: 0
  • EndNote: 2
Views and downloads (calculated since 04 Jan 2019)
Cumulative views and downloads (calculated since 04 Jan 2019)
Viewed (geographical distribution)  
Total article views: 117 (including HTML, PDF, and XML) Thereof 116 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 22 Mar 2019
Publications Copernicus
Download
Short summary
Storm snow instabilities often crest during storms which hampers field experiements. Yet, layers of nature-like snow can be created in the lab. We shear tested samples containing typical storm snow and other weak layers. Failure was consistently located in the weak layer and ocurred after linear elastic-perfectly plastic deformation. Measurements of shear modulus and fracture toughness indicate that surface hoar and precipitation particles are equally fragile in the first hours after burial.
Storm snow instabilities often crest during storms which hampers field experiements. Yet, layers...
Citation