Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Discussion papers
https://doi.org/10.5194/tc-2018-75
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2018-75
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 May 2018

Research article | 14 May 2018

Review status
This discussion paper is a preprint. A revision of the manuscript for further review has not been submitted.

Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara seas

Ira Leifer1, F. Robert Chen2, Thomas McClimans3, Frank Muller Karger2, and Leonid Yurganov4 Ira Leifer et al.
  • 1Bubbleology Research International, Inc., Solvang, CA, USA
  • 2University of Southern Florida, USA
  • 3SINTEF Ocean, Trondheim, Norway
  • 4University of Maryland, Baltimore, USA

Abstract. Long-term (2003–2015) satellite-derived sea-ice extent, sea surface temperature (SST), and lower tropospheric methane (CH4) of the Barents and Kara Seas (BKS) were analyzed for statistically significant anomalies and trends for 10 focus areas and on a pixel basis that were related to currents and bathymetry. Large positive CH4 anomalies were discovered around Franz Josef Land (FJL) and offshore west Novaya Zemlya in September. Far smaller CH4 enhancement was around Svalbard, downstream of known seabed seepage.

Strongest SST increase was southeast Barents Sea in June due to strengthening of the warm Murman Current (MC) and in the south Kara Sea in September, when the cold Percey Current weakens. These regions and around FJL exhibit the strongest CH4 growth. Likely sources are CH4 seepage from subsea permafrost and hydrates and the petroleum reservoirs underlying the central and east Barents Sea and the Kara Sea. The spatial pattern was poorly related to depth, and better explained by shoaling. Peak CH4 anomaly is several months after peak SST, consistent with a several month delay between SST and seabed temperature. Continued MC strengthening will increase heat transfer to the BKS, rendering the Barents Sea ice-free in about 15 years.

Ira Leifer et al.
Interactive discussion
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Ira Leifer et al.
Ira Leifer et al.
Viewed  
Total article views: 376 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
283 86 7 376 30 5 7
  • HTML: 283
  • PDF: 86
  • XML: 7
  • Total: 376
  • Supplement: 30
  • BibTeX: 5
  • EndNote: 7
Views and downloads (calculated since 14 May 2018)
Cumulative views and downloads (calculated since 14 May 2018)
Viewed (geographical distribution)  
Total article views: 375 (including HTML, PDF, and XML) Thereof 375 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 12 Dec 2018
Publications Copernicus
Download
Short summary
Based on long-term satellite data of sea surface temperature and methane in the Barents and Kara Seas trends of increasing methane and sea surface temperature were found that were related to strengthening currents with strong methane anomalies near Franz Josef Land and Novaya Zemlya. Likely sources are methane seepage from subsea permafrost and hydrates, with current shoaling aiding the transport of near seabed dissolved methane to upper waters and the atmosphere.
Based on long-term satellite data of sea surface temperature and methane in the Barents and Kara...
Citation
Share