Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Discussion papers
https://doi.org/10.5194/tc-2019-12
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2019-12
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 11 Mar 2019

Submitted as: research article | 11 Mar 2019

Review status
This discussion paper is a preprint. It has been under review for the journal The Cryosphere (TC). A final paper in TC is not foreseen.

Supraglacial pond evolution in the Everest region, central Himalaya, 2015–2018

Caroline J. Taylor and J. Rachel Carr Caroline J. Taylor and J. Rachel Carr
  • School of Geography, Politics and Sociology, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK

Abstract. Supraglacial ponds are characteristic of debris-covered glaciers and greatly enhance local melt rates. They can grow rapidly and coalesce to form proglacial lakes, which represent a major hazard. Here, we use Sentinel-2A satellite imagery (10 m) to quantify the spatiotemporal changes of 6,425 supraglacial ponds for 10 glaciers in the Everest region, Nepal, between 2015 and 2018. During the study period, ponded area increased on all glaciers, but showed substantial temporal and spatial variation, and the rate of pond growth increased substantially relative to 2000–2015 (Watson et al., 2016). Both Imja and Spillway Lake expanded and Khumbu Glacier developed a chain of connected ponds. 54 % of ponds were associated with an ice-cliff, but the proportion of ponds with cliffs decreased during the study period. Pond location generally corresponded to lower surface velocity, but this relationship was not ubiquitous. Ponds are now predominantly found at mid-elevations on our study glaciers, suggesting that conditions conducive to pond formation have advanced up-glacier compared to general theory. Results demonstrate the need to utilize high-resolution imagery (< 10 m), as using Landsat (30 m) would miss 55–86 % of the total ponds. Glaciers were classified by stage of development (Komori, 2008; Robertson, 2012). Two glaciers transitioned between stages between 2015 and 2018, suggesting that lakes in the region are evolving rapidly. Some study glaciers displayed characteristics of multiple classes, so we propose an adapted classification system. Overall, our results demonstrate rapid pond expansion in the Everest region and highlight the need for continued monitoring for hazard assessment.

Caroline J. Taylor and J. Rachel Carr
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Caroline J. Taylor and J. Rachel Carr
Caroline J. Taylor and J. Rachel Carr
Viewed  
Total article views: 455 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
320 133 2 455 28 4 3
  • HTML: 320
  • PDF: 133
  • XML: 2
  • Total: 455
  • Supplement: 28
  • BibTeX: 4
  • EndNote: 3
Views and downloads (calculated since 11 Mar 2019)
Cumulative views and downloads (calculated since 11 Mar 2019)
Viewed (geographical distribution)  
Total article views: 264 (including HTML, PDF, and XML) Thereof 263 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 18 Aug 2019
Publications Copernicus
Download
Short summary
Supraglacial ponds can greatly enhance local melt rates, growing rapidly to form proglacial lakes, which represent a major hazard. Here, a remote sensing study using 10m resolution satellite imagery (Sentinel-2A) was deployed to quantify the changes of 6,425 supraglacial ponds on 10 glaciers in the Everest region of Nepal, 2015 to 2018. Overall, our results demonstrate rapid pond expansion, subject to spatial and temporal variation, highlighting the need for continued monitoring.
Supraglacial ponds can greatly enhance local melt rates, growing rapidly to form proglacial...
Citation