Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Discussion papers
https://doi.org/10.5194/tc-2019-126
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2019-126
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 26 Jul 2019

Submitted as: research article | 26 Jul 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal The Cryosphere (TC).

Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements

Pia Nielsen-Englyst1,2, Jacob L. Høyer2, Kristine S. Madsen2, Rasmus T. Tonboe2, and Gorm Dybkjær2 Pia Nielsen-Englyst et al.
  • 1Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark
  • 2Danish Meteorological Institute(DMI), DK-2100 Copenhagen Ø, Denmark

Abstract. The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic, ice covered areas is heavily under-sampled when it comes to in situ measurements, and large uncertainties exist in weather- and reanalysis products. This paper presents a method for estimating daily mean 2 meter air temperatures (T2m) in the Arctic from satellite observations of skin temperature, using the Arctic and Antarctic ice Surface Temperatures from thermal Infrared (AASTI) satellite dataset, providing spatially detailed observations of the Arctic. The method is based on a linear regression model which has been developed using in situ observations and daily mean satellite ice surface skin temperatures combined with a seasonal variation to estimate daily T2m. The satellite derived T2m product including estimated uncertainties covers clear sky snow and ice surfaces in the Arctic region during the period 2000–2009. Comparison with independent in situ measured T2m gives average correlations of 95.5 % and 96.5 % and average root mean square errors of 3.47 °C and 3.19 °C for land ice and sea ice, respectively. The reconstruction provides a much better spatial coverage than the sparse in situ observations of T2m in the Arctic, is independent of numerical weather prediction model input and it therefore provides an important alternative to simulated air temperatures to be used for assimilation or global surface temperature reconstructions. A comparison between in situ T2m versus T2m from satellite and ERA-Interim shows that the T2m derived from satellite observations validate similar or better than ERA-Interim estimates in the Arctic.

Pia Nielsen-Englyst et al.
Interactive discussion
Status: open (until 23 Sep 2019)
Status: open (until 23 Sep 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Pia Nielsen-Englyst et al.
Pia Nielsen-Englyst et al.
Viewed  
Total article views: 257 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
201 55 1 257 1 3
  • HTML: 201
  • PDF: 55
  • XML: 1
  • Total: 257
  • BibTeX: 1
  • EndNote: 3
Views and downloads (calculated since 26 Jul 2019)
Cumulative views and downloads (calculated since 26 Jul 2019)
Viewed (geographical distribution)  
Total article views: 90 (including HTML, PDF, and XML) Thereof 88 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 18 Aug 2019
Publications Copernicus
Download
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic, ice covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 meter air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite derived T2m product covers clear sky snow and ice surfaces in the Arctic for the period 2000–2009.
The Arctic region is responding heavily to climate change, and yet, the air temperature of...
Citation