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1. Filtering of DEM rasters  

Before computing the glacier-specific Δh parameterized functions, some preprocessing is done to the regional French 

Alps DEM raster files in order to filter artefacts and noise. The processing chain works as follows: 

 

1. The regional DEM files are cropped using the 2003 glacier inventory shapefile outlines, thus obtaining 

glacier-specific rasters with the DEMs from 1979 and 2011. 

2. The glacier surface altitude difference for this period (so-called dh/dt) which corresponds to the change in 

ice thickness is computed glacier by glacier by subtracting the two previously mentioned DEM rasters. 

3. A first empirical filter is applied to all rasters to filter unrealistic values coming from artefacts (e.g., presence 

of clouds or saturation on the images used to generate de DEMs). 

4. The filtered ice thickness difference (dh/dt) and DEM rasters are paired together as in Figure 12, and a low-

order polynomial fit is applied in order to get the main trend of the scatterplot between the ice thickness 

difference vs. altitude. 

5. A dynamic envelope/buffer around the polynomial fit line is computed for each glacier based on a quantile 

between maximum and minimum values for each altitude. In order to smooth the computed envelope for 

each altitude, a convolutional filter is applied to these values in order to smooth them and to follow the 

polynomial fit. A dynamic sliding window size is used to adjust the averaging process to the characteristics 

of each glacier.  

6. A second filter is then applied using the computed smoothed envelope buffer to remove outliers 

7. A final polynomial fit is computed with a variable order depending on the number of remaining data values 

of each glacier. 

8. The percentage of pixels of information available for computing the polynomial fit (the parameterized 

function) is displayed for each glacier at the end of the processing chain. 

  

2. SMB statistical error analysis 

 

In order to determine the error due to each predictor, a Lasso model was trained with the same training matrix as the 

ANN, but instead of using SMB as ground truth data the errors generated by the ANN without weights were used. As 

discussed in section 4.1, Lasso performs a regularization on the training dataset, thus keeping only certain predictors 

and removing the rest. By looking at the resulting coefficients of the model, we can estimate the linear contribution 

of each predictor to the final model error. Latitude and longitude appear as the most important error predictors, but 

their contribution might in fact indicate the different magnitude of errors between glaciers or regions, since the pair 

of coordinates specifically identifies each glacier. October, August and March temperature follow behind, indicating 

that changes in temperature during these months have an influence in the simulation errors. It is not surprising that 

two of these months appear as top predictors as seen in Fig. 5 as changes in temperature during these months at the 

transition between the accumulation and ablation season can have a strong importance on the surface mass balance 

processes.  



 

Figure S1: Importance (%) of the first 10 predictors using Lasso to predict residual error from the ANN SMB model. Green bars 

indicate topographical features, red bars temperature-related features and blue bars precipitation-related features. 

 

 

Such an approach to analyze the influence of the different predictors into the quantification of uncertainties is of course 

limited, since a linear model is trained with nonlinear results. But these results are useful to determine the main 

contributors to errors rather than quantifying these errors, which has been done with the LOGO, LOYO and LSYGO 

cross-validations.  
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3. Supplementary figures 

 

 

Figure S2: Comparison of simulated glacier ice thicknesses from F19 with observations from the GLACIOCLIM observatory. 

Points are compared at 25 m intervals on the glacier flowline. The polynomial fits have less degrees of freedom for the slope 

plots. Note that for some glaciers the dates are not the same 

 

 

Figure S3: Example of dynamical calculation of ablation season length used for computing the annual CPDD value for Glacier 

Blanc (Écrins cluster) in 1963 (left) and 1984 (right) 

 



 
 

Figure S4: Examples of glacier specific Δh parameterized functions generated by ALPGM. The order of the polynomial fit 
depends on the number of available pixels. 

 

 

Figure S5: Results for the spatiotemporal cross-validation using Leave-Some-Glaciers-and-Years-Out (LSYGO). SMB values 

are in m.w.e. Compared to the other scatter plots from 3.2, there are less values available for test due to the severity of the 

spatiotemporal independence.  


