Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Discussion papers
https://doi.org/10.5194/tc-2019-164
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2019-164
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 02 Sep 2019

Submitted as: research article | 02 Sep 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal The Cryosphere (TC).

Drifting snow statistics from multiple-year autonomous measurements in Adelie Land, eastern Antarctica

Charles Amory Charles Amory
  • Department of Geography, University of Liege, Liege, Belgium

Abstract. Drifting snow is a widespread feature over the Antarctic ice sheet whose climatological and hydrological significances at the continental scale have been consequently investigated through modelling and satellite approaches. While field measurements are needed to evaluate and interpret model and punctual satellite products, most drifting snow observation campaigns in Antarctica involved data collected at a single location and over short time periods. With the aim of acquiring new data relevant to the observations and modelling of drifting snow in Antarctic conditions, two remote locations in coastal Adelie Land (East Antarctica) 100 km apart were instrumented in January 2010 with meteorological and second-generation IAV Engineering acoustic FlowCaptTM sensors. The data provided nearly continuously so far constitutes the longest dataset of autonomous near-surface (i.e., below 2 m) measurements of drifting snow currently available over the Antarctic continent. This paper presents an assessment of drifting snow occurrences and snow mass transport from up to 9 years (2010–2018) of half-hourly observational records collected in one of the Antarctic regions most prone to snow transport by wind. The dataset is freely available to the scientific community and can be used to complement satellite products and evaluate snow-transport models close to the surface and at high temporal frequency.

Charles Amory
Interactive discussion
Status: open (extended)
Status: open (extended)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Charles Amory
Charles Amory
Viewed  
Total article views: 257 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
176 75 6 257 5 6
  • HTML: 176
  • PDF: 75
  • XML: 6
  • Total: 257
  • BibTeX: 5
  • EndNote: 6
Views and downloads (calculated since 02 Sep 2019)
Cumulative views and downloads (calculated since 02 Sep 2019)
Viewed (geographical distribution)  
Total article views: 134 (including HTML, PDF, and XML) Thereof 128 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 14 Nov 2019
Publications Copernicus
Download
Short summary
This paper presents an assessment of drifting snow occurrences and snow mass transport from up to 9 years (2010–2018) of half-hourly observational records collected at two remote locations in coastal Adelie Land (East Antarctica) using second-generation IAV Engineering acoustic FlowCaptTM sensors. The dataset is freely available to the scientific community and can be used to complement satellite products and evaluate snow-transport models close to the surface and at high temporal frequency.
This paper presents an assessment of drifting snow occurrences and snow mass transport from up...
Citation