Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Discussion papers
https://doi.org/10.5194/tc-2019-227
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2019-227
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 01 Oct 2019

Submitted as: research article | 01 Oct 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal The Cryosphere (TC).

Ground subsidence and heave over permafrost: hourly time series reveal inter-annual, seasonal and shorter-term movement caused by freezing, thawing and water movement

Stephan Gruber Stephan Gruber
  • Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, K1S 5B6, Canada

Abstract. Heave and subsidence of the ground surface can offer insight into processes of heat and mass transfer in freezing and thawing soils. Additionally, subsidence is an important metric for monitoring and understanding the transformation of permafrost landscapes under climate change. Corresponding ground observations, however, are sparse and episodic. A simple tilt-arm apparatus with logging inclinometer has been developed to measure heave and subsidence of the ground surface with hourly resolution and millimetre-accuracy. This contribution reports data from the first two winters and the first full summer, measured at three sites with contrasting organic, and frost-susceptible soils in warm permafrost. The patterns of surface movement differ significantly between sites and from a prediction based on the Stefan equation and observed ground temperature. The data is rich in features of heave and subsidence that are several days to several weeks long and that may help elucidate processes in the ground. For example, late-winter heave followed by thawing and subsidence, as reported in earlier literature and hypothesised to be caused by infiltration and refreezing of water into permeable frozen ground, has been detected. An early-winter peak in heave, followed by brief subsidence, is discernible in a previous publication but so far has not been interpreted. An effect of precipitation on changes in surface elevation can be inferred with confidence. These results highlight the potential of ground-based observation of subsidence and heave as an enabler of progress in process understanding, modeling and interpretation of remotely sensed data.

Stephan Gruber
Interactive discussion
Status: open (until 26 Nov 2019)
Status: open (until 26 Nov 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Stephan Gruber
Data sets

Data and code to accompany the manuscript "Ground subsidence and heave over permafrost: hourly time series reveal inter-annual, seasonal and shorter-term movement caused by freezing, thawing and water movement" S. Gruber https://doi.org/10.5281/zenodo.3466097

Stephan Gruber
Viewed  
Total article views: 197 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
145 50 2 197 2 0
  • HTML: 145
  • PDF: 50
  • XML: 2
  • Total: 197
  • BibTeX: 2
  • EndNote: 0
Views and downloads (calculated since 01 Oct 2019)
Cumulative views and downloads (calculated since 01 Oct 2019)
Viewed (geographical distribution)  
Total article views: 86 (including HTML, PDF, and XML) Thereof 86 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 15 Oct 2019
Publications Copernicus
Download
Short summary
A simple method to record heave and subsidence of the land surface at specific field locations is described. Hourly observations from three sites, over two winters and one summer, are analyzed and discussed. The data is rich in features that point to the influence of freezing and thawing and of wetting and drying of the soil. This type of observation may offer new insight into the processes of heat and mass transfer in soil and help to monitor climate change impacts.
A simple method to record heave and subsidence of the land surface at specific field locations...
Citation