Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Discussion papers
https://doi.org/10.5194/tc-2019-325
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2019-325
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 06 Mar 2020

Submitted as: research article | 06 Mar 2020

Review status
This preprint is currently under review for the journal TC.

21st century estimates of mass loss rates from glaciers in the Gulf of Alaska and Canadian Archipelago using a GRACE constrained glacier model

Lavanya Ashokkumar and Christopher Harig Lavanya Ashokkumar and Christopher Harig
  • Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA

Abstract. Ice mass loss rates from glaciers in the Gulf of Alaska and the Canadian Archipelago are expected to increase through the end of century in response to increasing temperatures. Here, we develop a new glacier model constrained by GRACE gravimetry observations for the period between 2002 and 2017. The high temporal and regional spatial resolution of GRACE mass balance estimates allows us to estimate regional glacier sensitivities to atmospheric changes, and account for higher order of glacier dynamics. We use our regionally constrained models to extrapolate future mass loss under different climate emission scenarios. Generally our 21st century sea level estimates are at the high end compared to other studies. We find that the Gulf of Alaska exhibits the highest mass loss rates between −79 to −112 Gt yr−1 between 2006 and 2100 under different scenarios, and displays the highest sensitivity to the specific scenario (RCP 2.6/4.5/8.5). Our estimates for Baffin Island are significantly higher than prior work (−57 to −85 Gt yr−1) and are comparable to projected mass loss rates from the Ellesmere region (−63 to −101 Gt yr−1).

Lavanya Ashokkumar and Christopher Harig

Interactive discussion

Status: open (until 01 May 2020)
Status: open (until 01 May 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
  • RC1: 'review', Anonymous Referee #1, 13 Mar 2020 Printer-friendly Version

Lavanya Ashokkumar and Christopher Harig

Lavanya Ashokkumar and Christopher Harig

Viewed

Total article views: 210 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
151 57 2 210 1 1
  • HTML: 151
  • PDF: 57
  • XML: 2
  • Total: 210
  • BibTeX: 1
  • EndNote: 1
Views and downloads (calculated since 06 Mar 2020)
Cumulative views and downloads (calculated since 06 Mar 2020)

Viewed (geographical distribution)

Total article views: 142 (including HTML, PDF, and XML) Thereof 142 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 06 Apr 2020
Publications Copernicus
Download
Short summary
Glacier mass loss or melting is expected to increase due to global temperature, and the rates of loss are rapidly increasing in the recent decades. In order to estimate the future sea-level rates more accurately, we need to determine the current rates of glacier loss. From our combined approach in glacier modelling and remote sensing, we are able to understand the sensitivity of glaciers in different regions to the climate change.
Glacier mass loss or melting is expected to increase due to global temperature, and the rates of...
Citation