Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Discussion papers
https://doi.org/10.5194/tc-2019-92
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2019-92
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 27 May 2019

Submitted as: research article | 27 May 2019

Review status
A revised version of this preprint was accepted for the journal TC and is expected to appear here in due course.

Toward a coupled model to investigate wave-sea ice interactions in the Arctic marginal ice zone

Guillaume Boutin1, Camille Lique1, Fabrice Ardhuin1, Clément Rousset2, Claude Talandier1, Mickael Accensi1, and Fanny Girard-Ardhuin1 Guillaume Boutin et al.
  • 1Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France
  • 2Sorbonne Universités (UPMC Paris 6), LOCEAN-IPSL, CNRS/IRD/MNHN, Paris, France

Abstract. The Arctic Marginal Ice Zone (MIZ), where strong interactions between sea ice, ocean and atmosphere are taking place, is expanding as the result of the on-going sea ice retreat. Yet, state-of-art models are not capturing the complexity of the varied processes occurring in the MIZ, and in particular the processes involved in the ocean-sea ice interactions. In the present study, a coupled sea ice - wave model is developed, in order to improve our understanding and model representation of those interactions. The coupling allows us to account for the wave radiative stress resulting from the wave attenuation by sea ice, and the sea ice lateral melt resulting from the wave-induced sea ice break-up. We found that, locally in the MIZ, the waves can affect the sea ice drift and melt, resulting in significant changes in sea ice concentration and thickness as well as sea surface temperature and salinity. Our results highlight the need to include the wave-sea ice processes in models aiming at forecasting sea ice conditions on short time scale, although the coupling between waves and sea ice would probably required to be investigated in a more complex system, allowing for interactions with the ocean and the atmosphere.

Guillaume Boutin et al.

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Guillaume Boutin et al.

Guillaume Boutin et al.

Viewed

Total article views: 516 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
315 196 5 516 20 7
  • HTML: 315
  • PDF: 196
  • XML: 5
  • Total: 516
  • BibTeX: 20
  • EndNote: 7
Views and downloads (calculated since 27 May 2019)
Cumulative views and downloads (calculated since 27 May 2019)

Viewed (geographical distribution)

Total article views: 361 (including HTML, PDF, and XML) Thereof 359 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 27 Feb 2020
Publications Copernicus
Download
Citation