Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Discussion papers
https://doi.org/10.5194/tc-2020-9
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2020-9
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 06 Feb 2020

Submitted as: research article | 06 Feb 2020

Review status
This preprint is currently under review for the journal TC.

The role of electrical conductivity in radarwave reflection

Slawek M. Tulaczyk and Neil T. Foley Slawek M. Tulaczyk and Neil T. Foley
  • Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA

Abstract. We have examined a general expression giving the specular reflection coefficient for a radar wave approaching a reflecting interface with normal incidence. The reflecting interface separates two homogeneous media, the properties of which are fully described by three scalar quantities: dielectric permittivity, magnetic permeability, and electrical conductivity. The derived relationship indicates that electrical conductivity should not be neglected a priori in glaciological investigations of subglacial materials, and in GPR studies of saturated sediments and bedrock, even at the high end of typical linear radar frequencies used in such investigations (e.g., 100 MHz). Our own experience in resistivity surveying in Antarctica, combined with a literature review, suggests that a wide range of geologic materials can have electrical conductivity that is high enough to significantly impact the value of radar reflectivity. Furthermore, we have given two examples of prior studies in which inclusion of electrical conductivity in calculation of the radar bed reflectivity may provide an explanation for results that may be considered surprising if the impact of electrical conductivity on radar reflection is neglected. The commonly made assumption that only dielectric permittivity of the two media need to be considered in interpretation of radar reflectivity can lead to erroneous conclusions.

Slawek M. Tulaczyk and Neil T. Foley

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Slawek M. Tulaczyk and Neil T. Foley

Slawek M. Tulaczyk and Neil T. Foley

Viewed

Total article views: 258 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
186 69 3 258 2 1
  • HTML: 186
  • PDF: 69
  • XML: 3
  • Total: 258
  • BibTeX: 2
  • EndNote: 1
Views and downloads (calculated since 06 Feb 2020)
Cumulative views and downloads (calculated since 06 Feb 2020)

Viewed (geographical distribution)

Total article views: 151 (including HTML, PDF, and XML) Thereof 149 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 05 Apr 2020
Publications Copernicus
Download
Short summary
Much of what we know about materials hidden beneath glaciers and ice sheets on Earth has been interpreted using radar reflection from the ice base. A common assumption is that electrical conductivity of the sub-ice materials does not influence the reflection strength and that the latter is controlled only by permittivity, which depends on the fraction of water in these materials. Here we argue that sub-ice electrical conductivity should be generally considered when interpreting radar records.
Much of what we know about materials hidden beneath glaciers and ice sheets on Earth has been...
Citation